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Bilinear pairings

e(P + R,Q) = e(P,Q) · e(R,Q) and e(P,Q + S) = e(P,Q) · e(P,S)

.
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Introduction

Elliptic Curve Cryptography (ECC):

• Underlying problem harder than integer factoring (RSA)

• Same security level with smaller parameters

• Efficiency in storage (short keys) and execution time

Pairing-Based Cryptography (PBC):

• Initially destructive

• Allows for innovative protocols

• Makes curve-based cryptography more flexible
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Introduction

Pairing-Based Cryptography (PBC) enables many elegant solutions to

cryptographic problems:

• Implicit certification schemes (IBE, CLPKC, etc.)

• Short signatures (in group elements, BLS, BBS)

• More efficient key agreements (Joux’s 3DH, NIKDS)

• Low-depth homomorphic encryption (BGN and variants)

• Isogeny-based cryptography (although not postquantum)

Not dead: Pairings are not only interesting for research, but actually

deployed in practice!

Disclaimer: I have no conflict of interest with any of the following

applications. This is not an endorsement.
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Classic: IBE in Voltage’s SecureMail

Implemented with supersingular curve over large characteristic [BF01].

Figure 1: Source: http://www.securemailworks.com/SecureMail.asp
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Modern applications



IBE in Cloudflare’s Geo Key Manager

Figure 2:

https://blog.cloudflare.com/geo-key-manager-how-it-works/
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IBE in Cloudflare’s Geo Key Manager

Implemented using a 256-bit Barreto-Naehrig curve [BN05]

Figure 3:

https://blog.cloudflare.com/geo-key-manager-how-it-works/
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Remote attestation in Intel SGX

Remote attestation scheme employs a pairing-based anonymous group

signature by Brickell and Li (EPID) [BL12].

Enhanced Privacy ID anonymous group signatures
Signatures verified to 
belong to the group, hiding 
the member that signed 

Issuer, holds the 
"master key", can grant 
access to the group

Members sign an 
enclave's measurement 
anonymously

Group = CPUs of same 
type, same SGX version

Verifier ensures that an 
enclave does run on a 
trusted SGX platform

Figure 4: Slides from BlackHat 2016 talk by Aumasson and Merino [AM16]. 8



Remote attestation in Intel SGX

Implemented using a 256-bit Barreto-Naehrig curve [BN05].

EPID implementation
Not in microcode, too complex

Not in SGX libs, but in the QE and PVE binaries

Undocumented implementation details:

● Scheme from https://eprint.iacr.org/2009/095 
● Barretto-Naehrig curve, optimal Ate pairing
● Code allegedly based on https://eprint.iacr.org/2010/354 

Pubkey and parameters provided by Intel Attestation Service (IAS)

Figure 5: Slides from BlackHat 2016 talk by Aumasson and Merino [AM16].
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Authentication in voting machines

Short signature scheme due to Boneh and Boyen [BB04] to link voting

machines to specific polling places, using BN 160-bit curve.
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Zcash cryptocurrencies

zk-SNARKs by Ben-Sasson et al. [BCG+14] for privacy-preserving

cryptocurrencies, also recently adopted by Ethereum.
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What is dead about pairings?

However, some things about pairings are dead:

1. Pairings over small char, due to many advances in the DLP,

including a quasi-polynomial algorithm by Barbulescu et

al. [BGJT14]

2. Pairing conference series after 6 editions, last one in 2013.

Figure 6: Source: http://www.ieccr.net/2013/pairing2013/
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What is dead about pairings?

Beware of the fake knock-off:
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Background



Pairing groups

Let G1 = 〈P〉 and G2 = 〈Q〉 be additive groups and GT be a

multiplicative group such that |G1| = |G2| = |GT | = prime r .

A general pairing

e : G1 ×G2 → GT

• G1 is typically a subgroup of E (Fp).

• G2 is typically a subgroup of E (Fpk ).

• GT is a multiplicative subgroup of F∗pk .

Hence pairing-based cryptography involves arithmetic in Fpk , for

embedding degree k .
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Pairing operations

A general pairing

e : G1 ×G2 → GT

Cryptographic schemes require multiple operations in pairing groups:

1. Exponentiation, membership testing, compression in G1, G2

and GT .

2. Hashing strings to G1, G2.

3. Efficient maps between G1 and G2.

4. Efficient pairing computation.

Problem: In practice, we want small k for efficient pairing!
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Curve families

At some point, pairing-based cryptography had an explosion of

parameter choices to choose from:

BN curves: k = 12, ρ ≈ 1

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1, t(x) = 6z2 + 1

BLS12 curves: k = 12, ρ ≈ 1.5

p(x) = (x − 1)2(x4 − x2 + 1)/3 + x ,

r(x) = x4 − x2 + 1, t(x) = x + 1

KSS18 curves: k = 18, ρ ≈ 4/3

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21

r(x) = (x6 + 37x3 + 343)/343, t(x) = (x4 + 16z + 7)/7

BLS24 curves: k = 24, ρ ≈ 1.25

p(x) = (x − 1)2(x8 − x4 + 1)/3 + x ,

r(x) = x8 − x4 + 1, t(x) = x + 1
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Barreto-Naehrig curves

Let x ∈ Z such that p(x) and r(x) are prime:

• p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

• r(x) = 36x4 + 36x3 + 18x2 + 6x + 1

Then E : y2 = x3 + b, b ∈ Fp is a curve of order r and embedding

degree k = 12 [BN05] and E ′ its twist of degree d = 6.

Fix x = −(262 + 255 + 1) and b = 2, the towering can be:

• Fp2 = Fp[i ]/(i2 − β), where β = −1

• Fp4 = Fp2 [s]/(s2 − ε), where ξ = 1 + i

• Fp6 = Fp2 [v ]/(v3 − ξ), where ξ = 1 + i

• Fp12 = Fp4 [v ]/(t3 − s) or Fp6 [w ]/(w2 − v)

Until recently: BN curves were king at the 128-bit security level and got

even close to standardization (IETF RFC).
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Barreto-Naehrig curves

Instantiating pairings over BN curves had many performance features:

1. Implementation-friendly parameters, with fast towering and

compact generators [GJNB11].

2. Prime-order group G1, facilitating protocols.

3. Twist of maximum degree, reducing size of G2.

4. Gallant-Lambert-Vanstone [GLV01] endomorphism in G1.

5. Galbraith-Scott homomorphism [GS08] in G2, GT .

6. Compressed squarings for exponentiation in GT .

Alfred Menezes, 2007

“These curves should not exist, they are too good to be

true.”
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Recent DLP attacks on the medium-prime case

In 2015, Kim and Barbulescu [KB16] proposed a variant of the NFS that

reduces the complexity of the DLP in Fpk in time L[1/3,
(
48
9

)1/3
] or

L[1/3,
(
32
9

)1/3
] for special primes p.

Direct consequences of these attacks on BN curves:

1. BLS signatures are not as short anymore. You can obtain similar

sizes with Schnorr and preimage-resistant hashing [NSW09].

2. Previous curves at 128-bit security now provide 100 bits of security.

Not much impact on curves at the 80-bit level.

3. Pairings may not be viable anymore on memory-constrained

devices.
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Curve families

And now we are somewhat back to that situation again. Recently

proposed parameters, from the most conservative:

1. Elliptic curves with embedding degree k = 1 (large base

field) [CMR17]

2. Symmetric pairings with prime embedding degree k = 2, 3 (still

large base field) [Sco05, ZW13]

3. Elliptic curves with less smooth embedding degrees (ordinary with

k = 9, 13, 15, 21, 27)

→ Adjusted field sizes and smooth embedding degrees such as

Barreto-Lynn-Scott (BLS) and Kachisa-Scott-Schaefer (KSS)

curves [BLS02, KSS08].

Previous work has demonstrated that BLS12 curves were promising at

the old 192-bit security level [AFK+12].
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Implementation techniques



Arithmetic levels

Protocols

Low-level backend

21



Software libraries

There are many different open-source software implementations of

pairings:

• PBC: on top of GMP, outdated.

• Panda: not as efficient anymore, but constant-time.

• Ate-pairing: CINVESTAV, previous state of the art.

• MIRACL: special support for constrained platforms.

• Apache Milagro: fast C and bindings to many languages.

• OpenPairing: OpenSSL patch, never merged.

• mcl: new library at new 128-bit level by Shigeo Mitsunari.

→ RELIC: UNICAMP, flexible and current state of the art.
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Finite field arithmetic

Target platform: Desktop processor.

1. An efficient 64-bit implementation of the base field arithmetic

typically employs:

• Montgomery representation.

• Wide multiplication instructions MUL and MULX.

• Lazy reduction:

(a · b) mod p + (c · d) mod p = (a · b + c · d) mod p

Open: Can CPU vector instruction improve the asymptotically faster

Residue Number Systems (RNS)?

2. Techniques for extension field arithmetic:

• Small quadratic/cubic non-residues and change of representation.

• Fastest formulas available in the literature (asymmetric squarings

due to [CH07].

• General lazy reduction: k reductions for Fpk arithmetic [AKL+11].
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Operations in G1 and G2

Scalar multiplications in G1 and G2 follow standard techniques, such as

projective coordinates and signed recodings.

Scalars can be decomposed using the GLV method when endomorphism

ψ is available: ` ≡ `0 + λ`1 (mod r)→ [`]P = [`0]P + [`1]ψ(P).

Hashing to G1 and G2 involves hashing to point and multiplying by

cofactor represented in base p [SBC+09, FKR11].
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Operations in GT

Pairing result is an element of the cyclotomic subgroup Gφk
(Fpk/d ).

Given C (g), efficient to compute C (g2) as shown by Karabina in [Kar13].

Idea: g |u|=2a−2b+1 can now be computed in three steps:

1. Compute C (g2i ) for 1 ≤ i ≤ a and store C (g2b) and C (g2a)

2. Compute D(C (g2a)) = g2a and D(C (g2b)) = g2b

3. Compute g |x| = g2a · (g2b)
k/2
· g

Remark 1: Montgomery’s simultaneous inversion allows simultaneous

decompression.

Remark 2: For dense exponent, plain cyclotomic squarings can be used

instead [GS10]. Signed recodings can be used because inversion is

conjugation, and base-(t − 1) expansions due to gp = g t−1.
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Pairing computation

Algorithm 1 Tate pairing [BKLS02].

Input: r =
∑log2 r

i=0 ri2
i ,P,Q.

Output: er (P,Q).

1: T ← P

2: f ← 1

3: for i = blog2(r)c − 1 downto 0 do

4: T ← 2T

5: f ← f 2 · lT ,T (Q)

6: if ri = 1, i 6= 0 then

7: T ← T + P

8: f ← f · lT ,P(Q)

9: end if

10: end for

11: return f (q
k−1/r)
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Pairing computation

A pairing computation essentially consists in the Miller loop followed by

the final exponentiation.

1. An efficient implementation of the Miller loop requires:

• Low Hamming weight of the integer parameter.

• Efficient formulas for curve arithmetic (homogeneous coordinates).

• Curve arithmetic combined together with computation of the line

evaluations.

2. And the final exponentiation:

• For even k, split the final exponent as (pk − 1)/φk(p) · φk(p)/r .

• Easy part computed with Frobenius.

• Hard part computed with decomposition in base p and vectorial

addition chain.

• Compressed squarings in cyclotomic subgroup.
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Pairing computation

Other optimizations are possible:

1. Optimal ate construction to minimize integer parameter by

φ(k) [Ver10].

2. Fixed argument pairings precomputes Miller loop when argumets

are fixed [CS10].

3. Product of pairings to share final exponentiation when evaluating∏m
i=0 e(Pi ,Qi ).
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Subgroup security

A security property mandating that cofactors have only large prime

factors to prevent small subgroup attacks [BCM+15]. Started as

“GT -strong” notion of security [Sco13].

In general, subgroup membership testing is easy in G1 (validity or

scalar multiplication).

In G2, we can exploit n = p − t + 1 and check if [p]Q = [t − 1]Q.

Faster: protocols can be modified instead to multiply by cofactors.

In a subgroup-secure curve with prime φk(p)/r , membership testing in

GT is easy by checking if gφk (p) = 1.

Impact: subgroup-secure curves slightly penalize pairing computation but

save on membership tests.
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New results



Implementation

Characteristics of the implementation:

• Target platform: Intel Skylake 64-bit processors.

• Library: RELIC is an Efficient LIbrary for Cryptography

(github.com/relic-toolkit/relic)

• Compiler: GCC 7.2.0 with flags -O3 -fomit-frame-point

-funroll-loops

Open: Still under heavy development!

Comparison between two sets of parameters:

1. BN vs BLS12 curves.

2. BLS12 vs KSS16 curves.

30
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BN vs BLS12

Parameter sizes suggested by Menezes et al. [MSS16]: subgroup-secure

BN-382 tweeted by Barreto, and BLS12-381 from ZCash (Sapling).

Operation BN-254 BN-382 BLS12-381

kP in G1 200 564 386

kQ in G2 459 1465 968

gk in GT 719 2284 1500

H to G1 58 180 500

H to G2 248 760 960

Test G1 0.306 0.691 323

Test G2 173 519 391

Test GT 271 713 (91) 3911

e(P,Q) (M+F) 583+406=989 1950+1291=3241 1310+1512=2822

Table 1: Timings from RELIC in 103 cycles in Skylake processor measured as

average of 104 executions (HT and TB disabled).

1(*) Faster test in Gφk
(Fpk/d ). 31



BLS12 vs KSS16

Parameters suggested by Barbulescu and Duquesne [BD17]: curves

BLS12-461 and KSS16-340. Advantages of BLS12 over KSS16:

1. Twist with larger degree and smaller G2 representation.

2. Compressed squarings due to d = 6.

3. Subgroup security.

Operation KSS16-340 BLS12-461

e(P,Q) (M+F) 1567+3856=5423 2547+2604=5151

Table 2: Timings from RELIC in 103 cycles in Skylake processor measured as

average of 104 executions (HT and TB disabled).

Beware: There is still plenty to do in terms of optimizing arithmetic in

the recently proposed KSS16 curve.
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History of pairing implementations

Implementation Curve (106 cycles)

MOV92 Supersingular Billions

HMS08 256-bit BN 10.0

NNS10 256-bit BN 4.38

BDM+10 256-bit BN 2.33

AKL+11 254-bit BN 1.56

M13 254-bit BN 1.16

ABLR13 254-bit BN 1.17

This work 254-bit BN 0.99

This work (optimistic) 381-bit BLS12 2.82

This work (conservative) 461-bit BLS12 5.15

Table 3: Speed records for pairing computation in the past decades.
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History of pairing implementations

Implementations of paring computation across time
La
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Further reading

1. Pairings for Beginners, by Craig Costello.

2. Guide to Pairing-Based Cryptography:
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Questions?
D. F. Aranha

dfaranha@ic.unicamp.br

@dfaranha

35



References i

Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred
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Naehrig, and Paulo S. L. M. Barreto.

A family of implementation-friendly BN elliptic curves.

Journal of Systems and Software, 84(8):1319–1326, 2011.

41



References vii

Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone.

Faster point multiplication on elliptic curves with efficient

endomorphisms.

In CRYPTO, volume 2139 of Lecture Notes in Computer Science,

pages 190–200. Springer, 2001.

Steven D. Galbraith and Michael Scott.

Exponentiation in pairing-friendly groups using

homomorphisms.

In Pairing, volume 5209 of Lecture Notes in Computer Science,

pages 211–224. Springer, 2008.

42



References viii

Robert Granger and Michael Scott.

Faster squaring in the cyclotomic subgroup of sixth degree

extensions.

In Public Key Cryptography, volume 6056 of Lecture Notes in

Computer Science, pages 209–223. Springer, 2010.

Koray Karabina.

Squaring in cyclotomic subgroups.

Math. Comput., 82(281):555–579, 2013.

Taechan Kim and Razvan Barbulescu.

Extended tower number field sieve: A new complexity for the

medium prime case.

In CRYPTO (1), volume 9814 of Lecture Notes in Computer

Science, pages 543–571. Springer, 2016.

43



References ix

Ezekiel J. Kachisa, Edward F. Schaefer, and Michael Scott.

Constructing brezing-weng pairing-friendly elliptic curves using

elements in the cyclotomic field.

In Pairing, volume 5209 of Lecture Notes in Computer Science,

pages 126–135. Springer, 2008.

Alfred Menezes, Palash Sarkar, and Shashank Singh.

Challenges with assessing the impact of NFS advances on the

security of pairing-based cryptography.

In Mycrypt, volume 10311 of Lecture Notes in Computer Science,

pages 83–108. Springer, 2016.

Gregory Neven, Nigel P. Smart, and Bogdan Warinschi.

Hash function requirements for schnorr signatures.

J. Mathematical Cryptology, 3(1):69–87, 2009.

44



References x

Michael Scott, Naomi Benger, Manuel Charlemagne, Luis

J. Dominguez Perez, and Ezekiel J. Kachisa.

Fast hashing to G2 on pairing-friendly curves.

In Pairing, volume 5671 of Lecture Notes in Computer Science,

pages 102–113. Springer, 2009.

Michael Scott.

Computing the tate pairing.

In CT-RSA, volume 3376 of Lecture Notes in Computer Science,

pages 293–304. Springer, 2005.

Michael Scott.

Unbalancing pairing-based key exchange protocols.

IACR Cryptology ePrint Archive, 2013:688, 2013.

45



References xi

Frederik Vercauteren.

Optimal pairings.

IEEE Trans. Information Theory, 56(1):455–461, 2010.

Xusheng Zhang and Kunpeng Wang.

Fast symmetric pairing revisited.

In Pairing, volume 8365 of Lecture Notes in Computer Science,

pages 131–148. Springer, 2013.

46


	Modern applications
	Background
	Implementation techniques
	New results

