Supersingular Isogeny Key Encapsulation

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Brian Koziel,
Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Viadimir Soukharev

NIVERSITY OF : \W} &
I WATERLOO VIRSAILLES e i3 TeExas
amazon @ WATERLOO ST—QUENTIN—EN-YVEE INSTRUMENTS
Microsoft:
Resea rch Radboud University {§5%
FAU November 14 "ome s
(Q\ W,
FLORIDA ATLANTIC £CC 201 O INFOSEC

UNIVERSITY Nijmegen, The Netherlands &7/ crosaL

Reza Azarderakhsh, N
Brian LaMacchi

 Feo, Basil Hess, Brian Koziel,
s, Vladimir Soukharev

I3 TEXAS
INSTRUMENTS

UNIVERSITY OF

WATERLOO

VERSAI

ST-QUENTI}

amazon

Microsoft-
Resea adboud University § :
E@U INE"
FLORIDA ATLANTIC 0)) INFOSEC

UNIVERSITY Nijmege e Netherlands @ GLOBAL

Part 1: Quick re-motivation

Quantum computers « Cryptopocalypse

p.q « Quantum computers break elliptic curves, finite fields,
factoring, everything currently used for PKC

NIST . NIST calls for quantum-secure key exchange and

National Institute

ond Technology signatures. Deadline Nov 30, 2017.

Diffie-Hellman instantiations

g% mod ¢q

g? mod ¢

Pa(E)

¢ (E)

Diffie-Hellman instantiations

DH ECDH SIDH
Elements integers g modulo | points P in curve curves E in
orime group isogeny class
Secrets exponents x scalars k Isogenies ¢
computations g,x — g* k,P — [k]P ¢, E - ¢(E)
hard problem given g, g* given P, [k]P given E, ¢(E)
find x find k find ¢

Part 2 Quick tutorial recap

Bob

W. Castryck (GIF): “Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404

Supersingular isogeny graph for € = 2. X(S,442,2)

@ Credit to Fre Vercauteren for example and pictures...

Supersingular isogeny graph for € = 3. X(S,442,3)

Credit to Fre Vercauteren for example and pictures...

SIDH: in a nutshell

params private qu
o : Eo') — EO/<A>
S are iSOgenous curves _ _
P’s, Q's, R’s, S’'s are points
b5 b5
!
A\ ¢A

Eo/(BY = £, > Eap = Eo/{(A, B)

SIDH: in a nutshell

params private qu

. Eq vEy = Eo/{Ps + |541Q4)
s are isogenous curves ! i

P's, Q's, R's, S's are points () = (P, (Pg),d4(05))

Pp s

Pa’

Eo/(Py + [55105) = L > Eap = Eo/{(A, B)

(Pp(Pa), P5(Q4)) = ()

Key: Alice sends her isogeny evaluated at Bob’s generators, and vice versa
[(Ra+ [splSs) 2 Eo/(Pa+ [salQ4,Pp + IsplQp) = En/(Rp + [s4]55)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

Ee = Eo/{(Fp)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64

64 elements in its kemel

ker(¢) = (Py)

Es = Ey/{[2]P)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

Ey = Eo/{[4]P)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

E; = Ey/{[8]F)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

E, = Ey/{[16]P,)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

Ey = Eo/(|32]Fp)
= ¢o(Ep)

[32]Po

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64

64 elements in its kemel

ker(¢) = (Py)

Ey = Eo/(|32]F)
= ¢o(Ep)

Py = ¢o(Fo)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E¢ = E1/(Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

Es = E1 /(|2]P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E, = E; /{[4]P1)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E; = E1 /(|8]Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E, = E; /{[16]P;)
= ¢1(E71)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E, = E; /{[16]P;)
= ¢1(E71)

P, = ¢,(P1)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

Ee = E5/(P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

Es = E5 /{[2]P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E, = E5 /{[4]P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E; = E>/([8]P;)
= ¢, (E3)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E; = E>/([8]P;)
= ¢, (E3)

Py = ¢,(P,)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E¢ = E3/(Ps3)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

Es = E3/{[2]P5)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E, = E3/([4]P5)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E, = E3/([4]P5)

Py = ¢3(P3)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

Ee = Ey/(Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

Es = Ey/([2]Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

Es = Ey/([2]Py)

Ps = ¢4 (Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢) = (Py)

E¢ = Es/(Ps)

Computing ¢ degree isogenies
¢ : Eg — Eg
® = @soPyopzodyodgoy

Po P, P4
P1 R

Ps

Claw algorithm

Given E and E' = ¢(E), with ¢ degree #¢, find ¢

Claw algorithm

Compute and store £¢/2-isogenies on one side

Claw algorithm

Compute and store £¢/2-isogenies on one side

Claw algorithm

... until you have all of them

Claw algorithm

Now compute £¢/2-isogenies on the other side

Claw algorithm

.. discarding them until you find a collision'

Claw algorithm

.. discarding them until you find a collision'

Claw algorithm

.. discarding them until you find a collision'

Claw algorithm

Collision will most likely be unique shortest path

Claw algorithm

This path describes secret isogeny ¢ : E — E’

Claw algorithm: classical analysis

» There are 0(£¢/?) curves £¢/2-isogenous to E’ (the blue nodes @)

thus 0(£¢/?) = 0(p/*) classical memory

* There are 0(£¢/?) curves £¢/2-isogenous to E’ (the blue nodes @), and
there are 0(€%/?) curves £¢/?-isogenous to E (the purple nodes @)

thus 0(£¢/2) = 0(p'/*) classical time

» Best (known) attacks: classical O(p'/*) and quantum 0 (p1/®)
» Confidence: both complexities are optimal for a black-box claw attack

Eu_(m_' = Eo/(Sa)
SIDH protocol summary

s P

* Setting: supersingular elliptic curves E /2 where p = 230 -1 b5y

* Parameters:; ,
Eo/Fz:y®=x3+x with #E,=(2'3/)
Pa, Q4 € Eo[2'| and Py, Qp € Eo[3/]

» Public key generation (Alice): |
s €]0,2Y)
Sa =Py +[5s]Q4
$a Eq = Egr= Eo/(54)
send Ey, ¢a(Pg), $a(Qp) to Bob

» Shared key generation (Alice):
Sap = ¢p(Py) + [s]l¢pp(Q4) € Ep
Gart Ep = Egpi= Ep/{(SaB)
Jap = J(EaB)

SIDH security summary

* Setting: supersingular elliptic curves E/IF,,2 where p is a large prime

* Hard problem: Given P,Q € E and ¢(P), p(Q) € ¢(E), compute ¢
(where ¢ has fixed, smooth, public degree)

» Best (known) attacks: classical 0(p'/*) and quantum 0(p1/¢)

Part 3: SIKE

"The poor user (S given enough rope with which to
hang himself — something a standard should not do.”

- Ron Rivest, 1992 (on DSA standard)

\\§\\
N\
9
U
D
Ite
k
ey C
O
m
9
re
SS
10
N

Point and isogeny arithmetic in P?

ECDH: move around different points on a fixed curve.
SIDH: move around different points and different curves

Eup @ by =x+ax*+ux

(r,y) & (XY :2) ﬁ (a,b) & (A: B+ C)

E BY?Z = CX3 + AX?Z + CXZ?

Qlx

B.
'C

P! point arithmetic: X:Z) (X’:Z’)/
P! isogeny arithmetic: (4:C) » (4":C")

B coefficient only
fixes the quadratic
twist, but

J(E) = j(E")

Point and isogeny arithmetic in P

“t®

¢3 : EA/C ,B/C/{il} - EAI/CI,BI/C//{il}
X:2) o (X(X3X—1Z32)2 : Z(Z3X —X3Z)?)

(A':C) = (Z% +18X222 —27X% : 4X,Z%)

Public keys are in IF;;Z

PKs = (Xp,Pp) +Xp4(05) » X 4(Q5~P5))

Conversely, if R =4+(Q —P)on E, : y? = x3 + ax* + x, then

2
B (1 — XpXg — XpXR — xQxR)
dxpXoXp

a — Xp — X — Xg

The starting curve

Ey : y*=x3+x

Computing ¢ : Ey — E' is broadly equivalent to computing End(E")

(see Kohel's thesis, Galbraith-Vercauteren survey, Galbraith-Petit-Shani-Ti)

Computing ¢ : Eq = E’ is subexponential if E is defined over IF,,
(see Biasse-Jao-Sankar, Galbraith-Delfs)

Known security not damaged, but perhaps we'd prefer to start on
Ey/F,2 when End(E) is not known. Don't know how?

Generating secret kernels

Recall

« P,,0Q4 € Ey[2°4] and Py, Qg € Ey[3¢B] with full order Weil pairings

« Alice’s secret is {[my]P,4 + [ny4]Q4), Bob's is {{mg]|Pg + [n5]Qg)
Wetake o mp =11, €020 andng €[02¢) N cmallest

. Zi
* Qq =[3°8](z1,—) and Py = [3°B](z; + i, —) ~ such that points
* O =\[28A](23» —)’ and P = [2°4](z4 + i, —) span torsions
\ J
! v

Consequences s 2

 Simple, uniform “3 point ladder” for computing P 4+ [n]Q [see FLOR'1/] “&
* R =P+ [n]Q can never be such that [2%]R = (0,0), so one 4-isogeny function

. Don't reach all possible subgroups. Problem? l&l

—

-

The main loop

Simple, but slow Optimal strategy [DJP'11] is harder; but much faster
eq. 28441 x [3] + 239 X ¢3 (x) eq. 811 x [3] + 1124 X ¢35 (x)

Spec/code gives concrete algorithm for deriving, checking and executing the optimal strategy

The problem with reusing static keys

« Galbraith-Petit-Shani-Ti: P, Q both order 2€4, and Alice’s static secret a € Z

(P + [a]Q) = (P + [«](Q + [2°471]P)) iff a is even
« Send Alice P =P and Q = (Q + [2¢471]P), if DH works fine, then a is even, else odd

« Even case (a = 2 Q):
(P + [2a]Q) = (P + [2a](Q + [28472]P)) iff @ is even

so send P = Pand Q = (Q + [2¢472]P)
« Odd case (

a=2a+1):
(P+[2a + 1]Q) = (P — [2472]Q + [2a + 1](Q + [26472]Q)) iff @ is even
sosend P =[1—2%72]Ppand Q = [1 4+ 2¢472](Q

D I

» .. continuing yields a in log,a adaptive interactions!!!
No known Weil to detect foul play, provided P, Q are scaled correctly!

Passively secure encryption (IND-CPA PKE), a la ElGamal

Alice Bob

PK, = [¢A(EO): ¢A(PB):¢A(QB)]
PKp = [¢B(EO): ¢B(PA):¢B(QA)]

J = j(EBA) =] (¢B(¢A(Eo)))
< [PKp , Hy (j) @ m]

J = j(EAB) =] (¢A(¢B(Eo)))

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob

PK, = [¢A(EO): ¢A(PB)r¢A(QB)]
PKp = [(PB(EO): ¢B(PA):¢B(QA)]

J = j(EBA) =] (¢B(¢A(Eo)))
< [PKp , Hy (j) @ m]

J = j(EAB) =] (¢A(¢B(Eo)))

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €, (0,1} m € {0,1}
r = H,(PK4, m)

QDKB(@ ,Hi(j) @ m] PKp(r) = [¢5(Ep), $5(Pa), p5(Q4) |
j = j(EBA) =] (¢B(¢A(Eo)))

j =i Eap) = (Ga($5(E)))

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m &g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

Jj=J(Esg) = (¢A(¢B(Eo))) K = Hs(c,m)

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m &g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

Jj=J(Esg) = (¢A(¢B(Eo))) K = Hs(c,m)
m' = c[2] @ H,(j)

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €, {01} m € {0,1}
r = H,(PK4, m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j = j(EBA) =] (¢B(¢A(Eo)))
J=J(Epp) =] (¢A(¢B(Eo))) K = Hs(c,m)

m' = c[2] @ H1(j)
r' = H,(PKy,m")

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m €g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

j=Jj(Eag) =] (¢A(¢B(Eo))) K = Hz(c,m)
m' = c[2] ® H,())
r' = Hy(PK,,m")
if PKg(r') = c[1] then K = H5(c,m") else K = H;(c, s)

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m €g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

j=J(Eap) =] (¢A(¢B(E0))) £ = ikem
m' = c[2] @ Hy(j) H,(j) = cSHAKE256(j, k, " " 2)
r' = H,(PK,,m") H,(PK,,m) = cSHAKE256(m||PKy4,e5," ", 0)

if PKp(r') = c[1] then K = H3(c,m’) else K = H3(c,s) | Hy(c,m) = cSHAKE256(ml|c, k," ", 1)

The curves and their security estimates

p — ZeABeB — 1
Name min min
(SIKEp+ | (eg,ep) | k |2K71 |(\/2¢€a,+/3e3) | V2K | (3/2°2,4/33)
[log, p1)
SIKEp503 (250,159) [128 e 2125 264 283
SIKEp761 |(372,239) 192 JueL 2186 296 2124
SIKEp964 |(486,301) |256 2255 DEIE 2128 2159

SIKE vs. IN

D-CCA |3

s

1ce KEMS

Quantum Encaps+ Size of
Name Primitive sec Decaps Encaps.
(bits) (ms) (KB)
NTRU-KEM NTRU 123 0.03 1.3
Kyber M-LWE 161 0.07 1.2
FrodoKEM LWE 103-150 1.2-2.3 95-154
SIKE Supersingular 84-125 10 - 30 04-0.6
Isogeny

Results obtained on 3.4GHz Intel Haswell (Kyber and NTRU-KEM) or Skylake (FrodoKEM and SIKE)

Fasy ECDH hybric

There are exponentially many a such that
Eq [F,2:y% = x° + ax?® + x is in the supersingular
isogeny class. These are all unsuitable for ECDH.

There are also exponentially many A such that
E, /F,iy® = x° + ax® + x is suitable for ECDH.
E.g., smallest a € [F,, such that E, is twist-secure.

Public keys only 1.17x larger, slowdown less than this, but....

e.g., on smallest curve we replace 128-bit classical security
(SSDDH) with 256-bit classical security (ECDLP)

Questions?

w..{;} Alice

- Y
e

S
¢

Bob

(‘?-

