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Stream encryption
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Message authentication (MAC)
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String sequence input and incrementality
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Session authenticated encryption (SAE) [KT, SAC 2011]

K, N1

T(0)

A(1) P(1)

C(1) T(1)

A(2) P(2)

C(2) T(3)

A(3) P(3)

C(3) T(2)

Initialization taking nonce N
T← 0t + FK (N)
history← N
return tag T of length t

Wrap taking metadata A and plaintext P
C← P+ FK (A ◦ history)
T← 0t + FK (C ◦ A ◦ history)
history← C ◦ A ◦ history
return ciphertext C of length |P| and tag T of length t
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Synthetic initialization value (SIV) of [KT, eprint 2016/1188]

A

P

FK FK

T C

Unwrap taking metadata A, ciphertext C and tag T
P← C+ FK (T ◦ A)
τ ← 0t + FK (P ◦ A)
if τ ̸= T then return error!
else return plaintext P of length |C|

Variant of SIV of [Rogaway & Shrimpton, EC 2006]
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Wide block cipher (WBC), as in [KT, eprint 2016/1188]

Encipher P with K and tweak W

(L,R) ← split(P)
R0 ← R0 + HK(L ◦ 0)
L ← L + GK (R ◦W ◦ 1)
R ← R + GK (L ◦W ◦ 0)
L0 ← L0 + HK(R ◦ 1)
C ← L ∥ R

return ciphertext C of length |P|

Pʹleft Pʹright

W

HK(... ° 0)

GK(... ° 1)

GK(... ° 0)

HK(... ° 1)

Cleft Cright

Inspired by HHFHFH of [Bernstein, Nandi & Sarkar, Dagstuhl 2016]
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How to build a PRF?
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How to build a PRF?
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Sponge [Keccak Team, Ecrypt 2008]
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Taking K as first part of input gives a PRF
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More efficient: donkeySponge [Keccak Team, DIAC 2012]
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Incrementality: duplex [Keccak Team, SAC 2011]
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More efficient: MonkeyDuplex [Keccak Team, DIAC 2012]

Instances:
Ketje [Keccak Team, now extended with Ronny Van Keer, CAESAR 2014]
+ half a dozen other CAESAR submissions
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Consolidation: Full-state keyed duplex
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[Mennink, Reyhanitabar, & Vizar, Asiacrypt 2015]
[Daemen, Mennink & Van Assche, Asiacrypt 2017]
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SAE with full-state keyed duplex: Motorist [KT, Keyak 2015]
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How to build a parallelizable PRF?

by Peter Miller (flick.com)
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How to build a parallelizable PRF?

by Barilla Food Service 17 / 35



Farfalle: early attempt [KT 2014-2016]
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Similar to Protected Counter Sums [Bernstein, ”stretch”, JOC 1999]
Problem: collisions with higher-order differentials if f has low degree
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Farfalle now [Keccak Team + Seth Hoffert, ToSC 2017]
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Input mask rolling and pc against accumulator collisions
State rolling, pe and output mask against state retrieval at output
Middle pd against higher-order DC
Input-output attacks have to deal with pe ◦ pd ◦ pc
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Kravatte = Farfalle with Keccak-p as in eprint 2016/1188
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Target security: 128 bits, incl. multi-target
pi = Keccak-p[1600] with # rounds in pb,pc,pd,pe being 6, 6, 4, 4
Rolling function as in [Granger, Jovanovic, Mennink & Neves, EC 2016],
linear with order 2320 − 1
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Kravatte as in TOSC 2018
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Due to theoretical attack reversing last rounds, increase # rounds
pi = Keccak-p[1600] with # rounds 6666 : Achouffe configuration
Disadvantage of Kravatte: 200-byte granularity
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by Perrie Nicholas Smith (perriesmith.deviantart.com)
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Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle
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Xoodoo · [noun, mythical] · /zu: du:/ ·Alpine mammal
that lives in compact herds, can survive avalanches
and is appreciated for the wide trails it creates in the
landscape. Despite its fluffy appearance it is very ro-
bust and does not get distracted by side channels.
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Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Achouffe configuration
linear full-state rolling function of order 2384 − 1
Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!
25 / 35
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Xoodoo state
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State: 3 horizontal planes each consisting of 4 lanes
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Xoodoo state
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State: 3 horizontal planes each consisting of 4 lanes
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Xoodoo round function

θ

ρwest

χ

ρeast

Iterated: nr rounds that differ only by round constant
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Nonlinear mapping χ

Effect on one plane:

0

1

2

complement

χ as in Keccak-p, operating on 3-bit columns
Involution and same propagation differentially and linearly
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Mixing layer θ

+ =

column parity θ-effect

fold

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel
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Mixing layer θ

+=

column parity

unfold

θ-effect

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel
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Plane shift ρeast
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shift (0,1)

After χ and before θ

Shifts planes y = 1 and y = 2 over different directions
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Plane shift ρwest
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1
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shift (0,11)

shift (1,0)

After θ and before χ

Shifts planes y = 1 and y = 2 over different directions
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Xoodoo pseudocode
..
nr rounds from i = 1− nr to 0, with a 5-step round function:

θ :
P← A0 + A1 + A2
E← P≪ (1, 5) + P≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0,0 ← A0,0 + rci

χ :
B0 ← A1 · A2
B1 ← A2 · A0
B2 ← A0 · A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)
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Xoodoo software performance

width cycles/byte per round
ARM Intel

bytes Cortex M3 Skylake
Keccak-p[1600] 200 2.44 0.080
ChaCha 64 0.69 0.059
Gimli 48 0.91 0.074∗
Xoodoo 48 1.20 0.083

∗ on Intel Haswell
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Xoodoo diffusion and confusion
Trail bounds, using [Mella, Daemen, Van Assche, ToSC 2016]:

min. trail weights
# rounds diff. linear

1 2 2
2 8 8
3 36 36
6 ≥ 100 ≥ 100

Strict Avalanche Criterion (SAC) [Webster, Tavares, Crypto ’85]

A mapping satisfies SAC if flipping an input bit will make each output
bit flip with probability close to 1/2

Xoodoo satisfies SAC
after 3 rounds in forward direction
after 2 rounds in backward direction
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Thanks for your attention!

θ

ρwest

χ

ρeast
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