
Innovations in permutation-based crypto

Joan Daemen1,2

based on joint work with
Guido Bertoni3, Seth Hoffert, Michaël Peeters1, Gilles Van Assche1

and Ronny Van Keer1

1STMicroelectronics 2Radboud University 3Security Pattern

ECC, Nijmegen, November 14, 2017

1 / 35

Pseudo-random function (PRF)

input

…

2 / 35

Stream encryption

nonce

plaintext = ciphertext

3 / 35

Message authentication (MAC)

plaintext

plaintext

4 / 35

Authenticated encryption

nonce

plaintext = ciphertext

plaintext

5 / 35

String sequence input and incrementality

packet #1

packet #1

FK
(
P(1)

)

6 / 35

String sequence input and incrementality

packet #1 packet #2

packet #1 packet #2

FK
(
P(2) ◦ P(1)

)

6 / 35

String sequence input and incrementality

packet #1 packet #2 packet #3

packet #1 packet #2 packet #3

FK
(
P(3) ◦ P(2) ◦ P(1)

)

6 / 35

Session authenticated encryption (SAE) [KT, SAC 2011]

K, N1

T(0)

A(1) P(1)

C(1) T(1)

A(2) P(2)

C(2) T(3)

A(3) P(3)

C(3) T(2)

Initialization taking nonce N
T← 0t + FK (N)
history← N
return tag T of length t

Wrap taking metadata A and plaintext P
C← P+ FK (A ◦ history)
T← 0t + FK (C ◦ A ◦ history)
history← C ◦ A ◦ history
return ciphertext C of length |P| and tag T of length t

7 / 35

Session authenticated encryption (SAE) [KT, SAC 2011]

K, N1

T(0)

A(1) P(1)

C(1) T(1)

A(2) P(2)

C(2) T(3)

A(3) P(3)

C(3) T(2)

Initialization taking nonce N
T← 0t + FK (N)
history← N
return tag T of length t

Wrap taking metadata A and plaintext P
C← P+ FK (A ◦ history)
T← 0t + FK (C ◦ A ◦ history)
history← C ◦ A ◦ history
return ciphertext C of length |P| and tag T of length t

7 / 35

Synthetic initialization value (SIV) of [KT, eprint 2016/1188]

A

P

FK FK

T C

Unwrap taking metadata A, ciphertext C and tag T
P← C+ FK (T ◦ A)
τ ← 0t + FK (P ◦ A)
if τ ̸= T then return error!
else return plaintext P of length |C|

Variant of SIV of [Rogaway & Shrimpton, EC 2006]
8 / 35

Wide block cipher (WBC), as in [KT, eprint 2016/1188]

Encipher P with K and tweak W

(L,R) ← split(P)
R0 ← R0 + HK(L ◦ 0)
L ← L + GK (R ◦W ◦ 1)
R ← R + GK (L ◦W ◦ 0)
L0 ← L0 + HK(R ◦ 1)
C ← L ∥ R

return ciphertext C of length |P|

Pʹleft Pʹright

W

HK(... ° 0)

GK(... ° 1)

GK(... ° 0)

HK(... ° 1)

Cleft Cright

Inspired by HHFHFH of [Bernstein, Nandi & Sarkar, Dagstuhl 2016]
9 / 35

How to build a PRF?

10 / 35

How to build a PRF?

By icelight (flickr.com) 10 / 35

Sponge [Keccak Team, Ecrypt 2008]

input output

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Taking K as first part of input gives a PRF

11 / 35

More efficient: donkeySponge [Keccak Team, DIAC 2012]

12 / 35

Incrementality: duplex [Keccak Team, SAC 2011]

0

0

r

c

outer
inner

initialize

pad trunc

f

duplexing

σ0 Z0

pad trunc

f

duplexing

σ1 Z1

pad trunc

f

duplexing

σ2 Z2

…

13 / 35

More efficient: MonkeyDuplex [Keccak Team, DIAC 2012]

Instances:
Ketje [Keccak Team, now extended with Ronny Van Keer, CAESAR 2014]
+ half a dozen other CAESAR submissions

14 / 35

Consolidation: Full-state keyed duplex

±

K
f

iv

Z ¾

f

Z ¾

f

Z ¾

…

[Mennink, Reyhanitabar, & Vizar, Asiacrypt 2015]
[Daemen, Mennink & Van Assche, Asiacrypt 2017]

15 / 35

SAE with full-state keyed duplex: Motorist [KT, Keyak 2015]

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

A(3)

T(3)

16 / 35

How to build a parallelizable PRF?

by Peter Miller (flick.com)

17 / 35

How to build a parallelizable PRF?

by Barilla Food Service 17 / 35

Farfalle: early attempt [KT 2014-2016]

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

Similar to Protected Counter Sums [Bernstein, ”stretch”, JOC 1999]
Problem: collisions with higher-order differentials if f has low degree

18 / 35

Farfalle: early attempt [KT 2014-2016]

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

Similar to Protected Counter Sums [Bernstein, ”stretch”, JOC 1999]
Problem: collisions with higher-order differentials if f has low degree

18 / 35

Farfalle now [Keccak Team + Seth Hoffert, ToSC 2017]

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

Input mask rolling and pc against accumulator collisions
State rolling, pe and output mask against state retrieval at output
Middle pd against higher-order DC
Input-output attacks have to deal with pe ◦ pd ◦ pc

19 / 35

Kravatte = Farfalle with Keccak-p as in eprint 2016/1188

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

Target security: 128 bits, incl. multi-target
pi = Keccak-p[1600] with # rounds in pb,pc,pd,pe being 6, 6, 4, 4
Rolling function as in [Granger, Jovanovic, Mennink & Neves, EC 2016],
linear with order 2320 − 1

20 / 35

Kravatte = Farfalle with Keccak-p as in eprint 2016/1188

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

Target security: 128 bits, incl. multi-target
pi = Keccak-p[1600] with # rounds in pb,pc,pd,pe being 6, 6, 4, 4
Rolling function as in [Granger, Jovanovic, Mennink & Neves, EC 2016],
linear with order 2320 − 1

20 / 35

Kravatte = Farfalle with Keccak-p as in eprint 2016/1188

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

Target security: 128 bits, incl. multi-target
pi = Keccak-p[1600] with # rounds in pb,pc,pd,pe being 6, 6, 4, 4
Rolling function as in [Granger, Jovanovic, Mennink & Neves, EC 2016],
linear with order 2320 − 1

20 / 35

Kravatte as in TOSC 2018

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Due to theoretical attack reversing last rounds, increase # rounds
pi = Keccak-p[1600] with # rounds 6666 : Achouffe configuration
Disadvantage of Kravatte: 200-byte granularity

21 / 35

Kravatte as in TOSC 2018

Due to theoretical attack reversing last rounds, increase # rounds
pi = Keccak-p[1600] with # rounds 6666 : Achouffe configuration
Disadvantage of Kravatte: 200-byte granularity

21 / 35

Kravatte as in TOSC 2018

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Due to theoretical attack reversing last rounds, increase # rounds
pi = Keccak-p[1600] with # rounds 6666 : Achouffe configuration
Disadvantage of Kravatte: 200-byte granularity

21 / 35

by Perrie Nicholas Smith (perriesmith.deviantart.com)

22 / 35

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

23 / 35

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

23 / 35

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

23 / 35

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

23 / 35

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

23 / 35

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

23 / 35

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,
Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD
For low-end platforms: locality of operations

minimizes swapping on AVR, M0, etc.
limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

23 / 35

Xoodoo · [noun, mythical] · /zu: du:/ ·Alpine mammal
that lives in compact herds, can survive avalanches
and is appreciated for the wide trails it creates in the
landscape. Despite its fluffy appearance it is very ro-
bust and does not get distracted by side channels.

24 / 35

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Achouffe configuration
linear full-state rolling function of order 2384 − 1
Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!
25 / 35

https://github.com/XoodooTeam/Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Achouffe configuration
linear full-state rolling function of order 2384 − 1
Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!
25 / 35

https://github.com/XoodooTeam/Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Achouffe configuration
linear full-state rolling function of order 2384 − 1
Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!
25 / 35

https://github.com/XoodooTeam/Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Achouffe configuration
linear full-state rolling function of order 2384 − 1
Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!
25 / 35

https://github.com/XoodooTeam/Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Achouffe configuration
linear full-state rolling function of order 2384 − 1
Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!
25 / 35

https://github.com/XoodooTeam/Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Achouffe configuration
linear full-state rolling function of order 2384 − 1
Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!
25 / 35

https://github.com/XoodooTeam/Xoodoo

Xoodoo state

x

y

z

state

State: 3 horizontal planes each consisting of 4 lanes

26 / 35

Xoodoo state

x

y

z

plane

State: 3 horizontal planes each consisting of 4 lanes

26 / 35

Xoodoo state

x

y

z

lane

State: 3 horizontal planes each consisting of 4 lanes

26 / 35

Xoodoo state

x

y

z

column

State: 3 horizontal planes each consisting of 4 lanes

26 / 35

Xoodoo round function

θ

ρwest

χ

ρeast

Iterated: nr rounds that differ only by round constant

27 / 35

Nonlinear mapping χ

Effect on one plane:

0

1

2

complement

χ as in Keccak-p, operating on 3-bit columns
Involution and same propagation differentially and linearly

28 / 35

Mixing layer θ

+ =

column parity θ-effect

fold

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

29 / 35

Mixing layer θ

+ =

column parity θ-effect

fold

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

29 / 35

Mixing layer θ

+ =

column parity θ-effect

fold

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

29 / 35

Mixing layer θ

+=

column parity

unfold

θ-effect

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

29 / 35

Plane shift ρeast

0

1

2
shift (2,8)

shift (0,1)

After χ and before θ

Shifts planes y = 1 and y = 2 over different directions

30 / 35

Plane shift ρwest

0

1

2
shift (0,11)

shift (1,0)

After θ and before χ

Shifts planes y = 1 and y = 2 over different directions

31 / 35

Xoodoo pseudocode
..
nr rounds from i = 1− nr to 0, with a 5-step round function:

θ :
P← A0 + A1 + A2
E← P≪ (1, 5) + P≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0,0 ← A0,0 + rci

χ :
B0 ← A1 · A2
B1 ← A2 · A0
B2 ← A0 · A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

32 / 35

Xoodoo software performance

width cycles/byte per round
ARM Intel

bytes Cortex M3 Skylake
Keccak-p[1600] 200 2.44 0.080
ChaCha 64 0.69 0.059
Gimli 48 0.91 0.074∗
Xoodoo 48 1.20 0.083

∗ on Intel Haswell

33 / 35

Xoodoo diffusion and confusion
Trail bounds, using [Mella, Daemen, Van Assche, ToSC 2016]:

min. trail weights
rounds diff. linear

1 2 2
2 8 8
3 36 36
6 ≥ 100 ≥ 100

Strict Avalanche Criterion (SAC) [Webster, Tavares, Crypto ’85]

A mapping satisfies SAC if flipping an input bit will make each output
bit flip with probability close to 1/2

Xoodoo satisfies SAC
after 3 rounds in forward direction
after 2 rounds in backward direction

34 / 35

Xoodoo diffusion and confusion
Trail bounds, using [Mella, Daemen, Van Assche, ToSC 2016]:

min. trail weights
rounds diff. linear

1 2 2
2 8 8
3 36 36
6 ≥ 100 ≥ 100

Strict Avalanche Criterion (SAC) [Webster, Tavares, Crypto ’85]

A mapping satisfies SAC if flipping an input bit will make each output
bit flip with probability close to 1/2

Xoodoo satisfies SAC
after 3 rounds in forward direction
after 2 rounds in backward direction

34 / 35

Xoodoo diffusion and confusion
Trail bounds, using [Mella, Daemen, Van Assche, ToSC 2016]:

min. trail weights
rounds diff. linear

1 2 2
2 8 8
3 36 36
6 ≥ 100 ≥ 100

Strict Avalanche Criterion (SAC) [Webster, Tavares, Crypto ’85]

A mapping satisfies SAC if flipping an input bit will make each output
bit flip with probability close to 1/2

Xoodoo satisfies SAC
after 3 rounds in forward direction
after 2 rounds in backward direction

34 / 35

Xoodoo diffusion and confusion
Trail bounds, using [Mella, Daemen, Van Assche, ToSC 2016]:

min. trail weights
rounds diff. linear

1 2 2
2 8 8
3 36 36
6 ≥ 100 ≥ 100

Strict Avalanche Criterion (SAC) [Webster, Tavares, Crypto ’85]

A mapping satisfies SAC if flipping an input bit will make each output
bit flip with probability close to 1/2

Xoodoo satisfies SAC
after 3 rounds in forward direction
after 2 rounds in backward direction

34 / 35

Thanks for your attention!

θ

ρwest

χ

ρeast

35 / 35

