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Cryptographic pairing: black-box properties

(G1,+), (G2,+), (GT , ·) three cyclic groups of large prime order `
Bilinear Pairing: map e : G1 × G2 → GT

1. bilinear: e(P1 + P2, Q) = e(P1,Q) · e(P2,Q),
e(P,Q1 + Q2) = e(P,Q1) · e(P,Q2)

2. non-degenerate: e(g1, g2) 6= 1 for 〈g1〉 = G1, 〈g2〉 = G2

3. efficiently computable.
Mostly used in practice:

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P,Q)ab .

; Many applications in asymmetric cryptography.
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Examples of application
I 1984: idea of identity-based encryption formalized by Shamir
I 1999: first practical identity-based cryptosystem of

Sakai-Ohgishi-Kasahara
I 2000: constructive pairings, Joux’s tri-partite key-exchange

(Triffie-Hellman)
I 2001: IBE of Boneh-Franklin, short signatures

Boneh-Lynn-Shacham

Rely on
I Discrete Log Problem (DLP): given g , y ∈ G, compute x s.t.

gx = y Diffie-Hellman Problem (DHP)
I bilinear DLP and DHP

Given G1,G2,GT , g1, g2, gT and y ∈ GT , compute P ∈ G1
s.t. e(P, g2) = y , or Q ∈ G2 s.t. e(g1,Q) = y
if gx

T = y then e(gx
1 , g2) = e(g1, gx

2 ) = gx
T = y

I pairing inversion problem
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Pairing setting: elliptic curves

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp, p ≥ 5

I proposed in 1985 by Koblitz, Miller
I E (Fp) has an efficient group law (chord an tangent rule)→ G
I #E (Fp) = p + 1− tr , trace tr : |tr | ≤ 2√p
I efficient group order computation (point counting)
I large subgroup of prime order ` s.t. ` | p + 1− tr and `

coprime to p
I E [`] ' Z/`Z⊕ Z/`Z (for crypto)
I only generic attacks against DLP on well-chosen genus 1 and

genus 2 curves
I optimal parameter sizes (log2 ` = log2 p)
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Pairings

1948 Weil pairing (accouplement)
1958 Tate pairing
1985 Miller, Koblitz: use Elliptic Curves in crypto
1986 Miller’s algorithm to compute pairings
1988 Kaliski’s implementation E/F11 : y2 = x3 − x (PhD at MIT)
At that time:

I easy to use supersingular curves for ECC: group order known
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Supersingular elliptic curves

Example over Fp, p ≥ 5

E : y2 = x3 + x / Fp, p = 3 mod 4

s.t. t = 0, #E (Fp) = p + 1.
take p s.t. p + 1 = 4 · ` where ` is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks
∃ pairing e : E (Fp) into Fp2 where DLP is much easier.
Do not use supersingular curves (1993–1999)
But computing a pairing is very slow:
[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a
163-bit supersingular curve, where GT ⊂ Fp2 of 326 bits.
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Pairing-based cryptography
1999: Frey–Muller–Rück: actually, Miller Algorithm can be
much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, GT ⊂ Fp2 of 1055 bits).

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

e : E (Fpn )[`]× E (Fpn )[`] F∗pn , e([a]P, [b]Q) = e(P,Q)ab

Attacks

I inversion of e : hard problem (exponential)
I discrete logarithm computation in E (Fp) : hard problem

(exponential, in O(
√
`))

I discrete logarithm computation in F∗pn : easier,
subexponential → take a large enough field
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Pairing-friendly curves

` | pn − 1, E [`] ⊂ E (Fpn ), n embedding degree
Tate Pairing: e : E (Fpn )[`]× E (Fpn )/`E (Fpn )→ F∗pn/(F∗pn )`

When n is small i.e. 1 6 n 6 24, the curve is pairing-friendly.
This is very rare: For a given curve, log n ∼ log `
([Balasubramanian Koblitz]).

pn p2, p6 p3, p4, p6 p12 p16 p18

Curve supersingular MNT BN, BLS12 KSS16 KSS18

MNT, n = 6:
p(x) = 4x2 + 1, t(x) = 1± 2x , #E (Fp)x2 ∓ 2x + 1
BN, n = 12:
p(x) = 36x4 + 36x3 + 24x2 + 6x + 1, t(x) = 6x2 + 1,
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1
More in Aranha’s talk.
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security estimates

[Lenstra-Verheul’01] estimates RSA key-sizes
The usual security estimates use

I the asymptotic complexity of the best known algorithm
(here NFS)

I the latest record computations (now 768-bit)
I extrapolation
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Number Field Sieve Algorithm

Subexponential asymptotic complexity:

Lpn [α, c] = e(c+o(1))(log pn)α(log log pn)1−α

I α = 1: exponential
I α = 0: polynomial
I 0 < α < 1: sub-exponential (including NFS)

1. polynomial selection (less than 10% of total time)
2. relation collection Lpn [1/3, c]
3. linear algebra Lpn [1/3, c]
4. individual discrete log computation Lpn [1/3, c ′ < c]
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Example for RSA key sizes

48 64 80 96 112 128
512
768

1,024
1,280
1,536
1,792
2,048
2,304
2,560
2,816
3,072

Equivalent symmetric security in bits

lo
g 2

N
in

bi
ts

s = log2(LN [1/3, 1.923])− 14
s.t. log2 N = 512↔ s = 50 bits

s = log2(LN [1/3, 1.923])− 8
s.t. 768 ↔ 67 bits
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Pairing key-sizes in the 2000’s

Assumed: DLP in prime fields Fp as hard as in medium and large
characteristic fields FQ
→ take the same size as for prime fields.

Security log2 finite n log2 degP ρ curve
level ` field p p = P(u)
128 256 3072 3072 (prime field)

256 3072 2 1536 no poly 6 supersingular
128 256 3072 3 1024 no poly 4 supersingular

256 3072 12 256 4 1 Barreto-Naehrig
640 7680 12 640 4 1→5/3 BN
427 7680 12 640 6 3/2 BLS12

192 384 9216 18 512 8 4/3 KSS18
384 7680 16 480 10 5/4 KSS16
384 11520 24 480 10 5/4 BLS24
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Small, medium, large characteristic

Q = pn, the characteristic p is
I small: p = LQ[α, c] where α < 1/3
I medium: p = LQ[α, c] where 1/3 < α < 2/3
I large: p = LQ[α, c] where α > 2/3
I boundary cases: p = LQ[1/3, c] and p = LQ[2/3, c]
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Estimating key sizes for DL in GF(pn)

GF(pn) much less studied than GF(p) or integer factorization.
I 2000 LUC, XTR cryptosystems: multiplicative subgroup of

prime order | Φn(p) (cyclotomic subgroup) of GF(p2), GF(p6)
I what is the hardness of computing DL in GF(pn), n = 2, 6?
I 2005 [Granger Vercauteren] LQ[1/2]
I 2006 Joux–Lercier–Smart–Vercauteren LQ[1/3, 2.423]

(NFS-HD)
I rising of pairings: what is the security of DL in

GF(2n),GF(3m),GF(p12)?
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Asymptotic complexities

Needed:
I asymptotic complexity (constants α, c)
I record computations to scale the shape (guess the o(1))

Asymptotic complexities now:
I For tiny characteristic: quasi-polynomial
I For small characteristic: L(α) for α < 1/3
I For medium and large characteristic: L(1/3, c + o(1))

What is c for medium and large characteristic?
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Theoretical improvements and records

theoretical improvements record computations
2013 Joux–Pierrot (SNFS for pairings)
2014 MNFS, Conjugation GF(p2)
2015 TNFS GF(p2), GF(p3), GF(p4)
2016 Sarkar–Singh, exTNFS GF(p3)
2017 more exTNFS NFS-HD: GF(p5), GF(p6)
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Estimating key sizes for DL in GF(pn)

I Latest variants of TNFS (Kim–Barbulescu, Kim–Jeong) seems
most promising for GF(pn) where n is composite

I We need record computations if we want to extrapolate from
asymptotic complexities

I The asymptotic complexities do not correspond to a fixed n,
but to a ratio between n and p in Q = pn
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Complexities

large characteristic p = LQ[α], α > 2/3:
(64/9)1/3 ' 1.923 NFS
special p:
(32/9)1/3 ' 1.526 SNFS (e.g. Thomé’s talk)

medium characteristic p = LQ[α], 1/3 < α < 2/3:
(96/9)1/3 ' 1.201 prime n NFS-HD (Conjugation)
(48/9)1/3 ' 1.747 composite n,

best case of TNFS: when parameters fit perfectly
special p:
(64/9)1/3 ' 1.923 NFS-HD+Joux–Pierrot’13
(32/9)1/3 ' 1.526 composite n, best case of STNFS

18 / 35



The NFS diagram for DLP in F∗pn

Let f , g be two polynomials defining two number fields
and such that in Fp[z ], f and g have a common irreducible factor
ϕ(z) ∈ Fp[z ] of degree n, s.t. one can define the extension
Fpn = Fp[z ]/(ϕ(z))
Diagram:

Z[x ]

Z[x ]/(f (x)) Z[x ]/(g(x))

x 7→ αf x 7→ αg

Fpn = Fp[z ]/(ϕ(z))

αf 7→ z αg 7→ z

a0 − a1x ∈

(a0 − a1αf )
smooth?

(a0 − a1αg )
smooth?

=
∏

qei
i =

∏
r
e′i
j

relation: “
∑

ei vlog qi =
∑

e′j vlog rj”

a0 − a1x + a2x2 ∈

(a0 + a1αf + a2α
2
f )

smooth?
(a0 + a1αg + a2α

2
g )

smooth?
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NFS parameters

I factor base =
{prime ideals pi , |Norm(pi )| ≤ B}
∪{prime ideals rj , |Norm(ri )| ≤ B}

I we need as many relations as prime ideals pi , rj
to get a square matrix

I balance the relation collection time with the linear algebra
time
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Algebraic Norms

The asymptotic complexity is determined by the size of norms of
the elements

∑
0≤i<t aiα

i in the relation collection step.
We want both sides smooth to get a relation.
“An ideal is B-smooth” approximated by
“its norm is B-smooth”.

Smoothness bound: B = Lpn [1/3, β]
Size of norms: Lpn [2/3, cN ]
Complexity: minimize cN in the formulas.
To reduce NFS complexity, reduce size of norms asymptotically.
→ very hard task.
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Extended TNFS [Kim Barbulescu 16]
I Tower NFS (TNFS): Barbulescu Gaudry Kleinjung
I Extended TNFS: Kim–Barbulescu, Kim–Jeong, Sarkar–Singh
I Tower of number fields
I deg(h) will play the role of t, where a0 + a1α+ . . .+ at−1α

t−1

I a0 − a1α becomes (a00 + a01τ)− (a10 + a11τ)α

Q

Kh = Q[τ ]/(h(τ))

Kh[x ]/(f (x)) Kh[x ]/(g(x))(a00 + a01τ)−
(a10 + a11τ)αf

smooth?

(a00 + a01τ)−
(a10 + a11τ)αg

smooth?
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Complexities

large characteristic p = LQ[α], α > 2/3:
(64/9)1/3 ' 1.923 NFS
special p:
(32/9)1/3 ' 1.526 SNFS (e.g. Thomé’s talk)

medium characteristic p = LQ[α], 1/3 < α < 2/3:
(96/9)1/3 ' 1.201 prime n NFS-HD (Conjugation)
(48/9)1/3 ' 1.747 composite n,

best case of TNFS: when parameters fit perfectly
special p:
(64/9)1/3 ' 1.923 NFS-HD+Joux–Pierrot’13
(32/9)1/3 ' 1.526 composite n, best case of STNFS
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Largest record computations in GF(pn) with NFS1

Finite
field

Size
of pn

Cost:
CPU days Authors sieving

dim
GF(p12) 203 11 [HAKT13] 7
GF(p6) 422 9,520 [GGMT17] 3
GF(p5) 324 386 [GGM17] 3
GF(p4) 392 510 [BGGM15b] 2
GF(p3) 593 8,400 [GGM16] 2
GF(p2) 595 175 [BGGM15a] 2
GF(p) 768 1,935,825 [KDLPS17] 2

None used TNFS, only NFS and NFS-HD were implemented.

1Data extracted from DiscreteLogDB
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Limitations of asymptotic complexity

use: NormKf (a(α)) = Res(a(x), f (x)) (for monic f )

|Res(a, f )| ≤ (da + 1)df /2(df + 1)da/2‖a‖df
∞‖f ‖da

∞

I based on bounds on coefficient size of polynomials, bounds on
algebraic norms

I Kalkbrener, Bistritz–Lifshitz bounds are not satisfying enough
I no record computation available to re-scale the asymptotic

formulas
Finding a better estimation and designing an implementation at
the same time

25 / 35



Menezes–Sarkar–Singh Estimations

curve log2 pn log2 p variant deg h cost
BN 3072 256 TNFS with constants 4 2136

BN 3732 311 TNFS without constants 4 2128

BN 3072 256 STNFS with constants 6 2150

BN 4596 383 STNFS without constants 6 2128

BLS 4608 384 TNFS with constants 4 2156

BLS 4608 384 TNFS without constants 4 2140

BLS 4608 384 STNFS with constants 6 2189

BLS 4608 384 STNFS without constants 6 2132
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Simulation

I compute record-looking polynomials
I simulate relation collection → extrapolate the number of

relations
I estimate linear algebra
I neglect individual log

Questions:
I how to simulate well without being too slow?
I how to model the filtering step (packing the matrix)?
I by how much balancing relation collection and linear algebra?
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Barbulescu-Duquesne simulation

Estimation of cost:

2B
A logB ρ

( log2 Nf
log2 B

)−1
ρ

( log2 Ng
log2 B

)−1
+ 27 B2

A(logB)2(log2 B)2

where A ≤ n/ gcd(deg h, n/ deg h),
ρ is the Dickman-ρ function

I takes into account Galois automorphisms
I takes into account filtering (reduced matrix)
I assume the coefficients of h, f are minimal
I assume α(f ), α(g) = 0
I balance cost of sieving ≈ cost of linear algebra
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Barbulescu-Duquesne estimates

curve log2 pn log2 p deg h cost
BN 3072 256 6 299,69

BN 5534 462 6 2128

BLS 5530 461 6 2128
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Simulation without sieving

space: S = {
∑

0≤i<dh
aiy i + (

∑
0≤i<dh

biy i )x , |ai |, |bi | < A}
volume: Vol = 22dh−1A2dh

algebraic norm:
N = NormKf (a(αh, αf )) = Resy (Resx (a(x , y), f (x)), h(y))
(monic h, f )
N is B-smooth (N =

∏
pi <B pei

i ) with probability

u = logN + α

logB , Pr = ρ(u) + (1− γ)ρ(u − 1)
logN

where γ ≈ 0.577 is Euler γ constant,
ρ is Dickman-ρ function
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Simulation without sieving

Implementation of Barbulescu–Duquesne technique
Variants:

I compute α(f ), α(g) (w.r.t. subfield)
I select h, f , g with good low α(f ) < −3, α(g) < −4

I Monte-Carlo simulation with 106 to 109 points in S taken at
random. For each point:
1. compute its algebraic norm Nf ,Ng in each number field
2. smoothness probability with Dickman-ρ

I Average smoothness probability over the subset of points
→ estimation of the total number of possible relations in S

I dichotomy to approach the best balanced parameters:
smoothness bound B, coefficient bound A.
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MNT curves, GT ⊂ Fp6

1024 2048 3072 4096 5120 6144

32

64

96

128

160

log2 pn

log2 Vol(S)
Simulation in Fp6

Lp6 [1/3, 1.923]
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Observations

(a) = (
∑dh−1

i=0 aiτ), (b) = (
∑dh−1

i=0 biτ) randomly chosen are
coprime with probability 1/ζKh (2)
Much different than for integers: 1/ζ(2) = 6/π2 ≈ 0.6

ζKh (s) =
∑
n∈N

1
ns (#ideals of norm n in Kh)

h = x2 + 1: 1/ζKh (2) ≈ 0.6
h = x2 − x + 4: 1/ζKh (2) ≈ 0.469
h = x2 + x − 1: 1/ζKh (2) ≈ 0.861
Experimentally: a good α comes with a low coprime probability
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Future work

I How to rank polynomials according to their smoothness
properties? α function (S. Singh) faster, generalized
Murphy’s E function

I How to build the factor basis?
I How to deal with generalized bad ideals?
I How to sieve very efficiently in even dimension 4 to 24?
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Thank you for your attention.
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