Estimating size requirements for pairings: Simulating the Tower-NFS algorithm in $GF(p^n)$

Quentin Deschamps, Aurore Guillevic, Shashank Singh

ENS Lyon, Inria Nancy, Loria, CNRS, Université de Lorraine

November 15, 1027

Elliptic Curve Cryptography Conference ECC17–Nijmegen, Netherlands

Cryptographic pairing: black-box properties

 $(G_1, +), (G_2, +), (G_T, \cdot)$ three cyclic groups of large prime order ℓ Bilinear Pairing: map $e : G_1 \times G_2 \to G_T$

1. bilinear:
$$e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$$
,
 $e(P, Q_1 + Q_2) = e(P, Q_1) \cdot e(P, Q_2)$

- 2. non-degenerate: $e(g_1,g_2)
 eq 1$ for $\langle g_1
 angle = {f G}_1$, $\langle g_2
 angle = {f G}_2$
- 3. efficiently computable.

Mostly used in practice:

$$e([a]P, [b]Q) = e([b]P, [a]Q) = e(P, Q)^{ab}$$
.

 \rightsquigarrow Many applications in asymmetric cryptography.

Examples of application

- ▶ 1984: idea of identity-based encryption formalized by Shamir
- 1999: first practical identity-based cryptosystem of Sakai-Ohgishi-Kasahara
- 2000: constructive pairings, Joux's tri-partite key-exchange (Triffie-Hellman)
- 2001: IBE of Boneh-Franklin, short signatures Boneh-Lynn-Shacham

Rely on

- ► Discrete Log Problem (DLP): given $g, y \in \mathbf{G}$, compute x s.t. $g^x = y$ Diffie-Hellman Problem (DHP)
- ▶ bilinear DLP and DHP Given $\mathbf{G}_1, \mathbf{G}_2, \mathbf{G}_T, g_1, g_2, g_T$ and $y \in \mathbf{G}_T$, compute $P \in \mathbf{G}_1$ s.t. $e(P, g_2) = y$, or $Q \in \mathbf{G}_2$ s.t. $e(g_1, Q) = y$ if $g_T^x = y$ then $e(g_1^x, g_2) = e(g_1, g_2^x) = g_T^x = y$
- pairing inversion problem

Pairing setting: elliptic curves

$$E/\mathbb{F}_p$$
: $y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_p$, $p \ge 5$

- proposed in 1985 by Koblitz, Miller
- $E(\mathbb{F}_p)$ has an efficient group law (chord an tangent rule) \rightarrow **G**
- $\#E(\mathbb{F}_p) = p + 1 tr$, trace tr: $|tr| \le 2\sqrt{p}$
- efficient group order computation (point counting)
- ► large subgroup of prime order l s.t. l | p + 1 tr and l coprime to p
- $E[\ell] \simeq \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z}$ (for crypto)
- only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
- optimal parameter sizes $(\log_2 \ell = \log_2 p)$

Pairings

1948 Weil pairing (accouplement)

1958 Tate pairing

1985 Miller, Koblitz: use Elliptic Curves in crypto

1986 Miller's algorithm to compute pairings

1988 Kaliski's implementation $E/\mathbb{F}_{11}: y^2 = x^3 - x$ (PhD at MIT) At that time:

▶ easy to use supersingular curves for ECC: group order known

Supersingular elliptic curves

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ p = 3 \mod 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks \exists pairing $e : E(\mathbb{F}_p)$ into \mathbb{F}_{p^2} where **DLP** is much easier. **Do not use supersingular curves (1993–1999)** But computing a pairing is **very slow**: [Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_T \subset \mathbb{F}_{p^2}$ of 326 bits.

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

inversion of e : hard problem (exponential)

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_p) : hard problem (exponential, in O(√ℓ))

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_p) : hard problem (exponential, in O(√ℓ))
- ▶ discrete logarithm computation in F^{*}_{pⁿ} : easier, subexponential → take a large enough field

Pairing-friendly curves

 $\ell \mid p^n - 1, E[\ell] \subset E(\mathbb{F}_{p^n}), n$ embedding degree Tate Pairing: $e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})/\ell E(\mathbb{F}_{p^n}) \to \mathbb{F}_{p^n}^*/(\mathbb{F}_{p^n}^*)^\ell$ When *n* is small i.e. $1 \leq n \leq 24$, the curve is *pairing-friendly*. This is very rare: For a given curve, $\log n \sim \log \ell$ ([Balasubramanian Koblitz]).

[Lenstra-Verheul'01] estimates RSA key-sizes The usual security estimates use

- the asymptotic complexity of the best known algorithm (here NFS)
- the latest record computations (now 768-bit)
- extrapolation

Number Field Sieve Algorithm

Subexponential asymptotic complexity:

$$\mathcal{L}_{p^n}[\alpha,c] = e^{(c+o(1))(\log p^n)^{\alpha}(\log \log p^n)^{1-\alpha}}$$

- ▶ α = 1: exponential
- $\alpha = 0$: polynomial
- ▶ $0 < \alpha < 1$: sub-exponential (including NFS)
- 1. polynomial selection (less than 10% of total time)
- 2. relation collection $L_{p^n}[1/3, c]$
- 3. linear algebra $L_{p^n}[1/3, c]$
- 4. individual discrete log computation $L_{p^n}[1/3, c' < c]$

Example for RSA key sizes

Pairing key-sizes in the 2000's

Assumed: DLP in prime fields \mathbb{F}_p as hard as in medium and large characteristic fields \mathbb{F}_Q

 \rightarrow take the same size as for prime fields.

Security	\log_2	finite	n	log ₂	deg P	ρ	curve
level	ℓ	field		р	p = P(u)		
128	256	3072		3072	(prime field) (E	
	256	3072	2	1536	no poly	6	supersingular
128	256	3072	3	1024	no poly	4	supersingular
	256	3072	12	256	4	1	Barreto-Naehrig
	640	7680	12	640	4	$1 \rightarrow 5/3$	BN
192	427	7680	12	640	6	3/2	BLS12
	384	9216	18	512	8	4/3	KSS18
	384	7680	16	480	10	5/4	KSS16
	384	11520	24	480	10	5/4	BLS24

Small, medium, large characteristic

 $Q = p^n$, the characteristic p is

- small: $p = L_Q[\alpha, c]$ where $\alpha < 1/3$
- medium: $p = L_Q[\alpha, c]$ where $1/3 < \alpha < 2/3$

• large:
$$p = L_Q[\alpha, c]$$
 where $\alpha > 2/3$

▶ boundary cases: $p = L_Q[1/3, c]$ and $p = L_Q[2/3, c]$

Estimating key sizes for DL in $GF(p^n)$

 $GF(p^n)$ much less studied than GF(p) or integer factorization.

- 2000 LUC, XTR cryptosystems: multiplicative subgroup of prime order | Φ_n(p) (cyclotomic subgroup) of GF(p²), GF(p⁶)
- what is the hardness of computing DL in $GF(p^n)$, n = 2, 6?
- > 2005 [Granger Vercauteren] $L_Q[1/2]$
- 2006 Joux–Lercier–Smart–Vercauteren L_Q[1/3, 2.423] (NFS-HD)
- rising of pairings: what is the security of DL in GF(2ⁿ),GF(3^m),GF(p¹²)?

Asymptotic complexities

Needed:

- asymptotic complexity (constants α, c)
- ▶ record computations to scale the shape (guess the o(1))
- Asymptotic complexities now:
 - For tiny characteristic: quasi-polynomial
 - For small characteristic: $L(\alpha)$ for $\alpha < 1/3$
 - For medium and large characteristic: L(1/3, c + o(1))

Asymptotic complexities

Needed:

- asymptotic complexity (constants α, c)
- ► record computations to scale the shape (guess the o(1)) Asymptotic complexities now:
 - ► For tiny characteristic: quasi-polynomial
 - For small characteristic: $L(\alpha)$ for $\alpha < 1/3$
 - For medium and large characteristic: L(1/3, c + o(1))

What is c for medium and large characteristic?

Theoretical improvements and records

	theoretical improvements	record computations
2013	Joux–Pierrot (SNFS for pairings)	
2014	MNFS, Conjugation	$GF(p^2)$
2015	TNFS	$GF(p^2)$, $GF(p^3)$, $GF(p^4)$
2016	Sarkar–Singh, exTNFS	$GF(p^3)$
2017	more exTNFS	NFS-HD: $GF(p^5)$, $GF(p^6)$

Estimating key sizes for DL in $GF(p^n)$

- Latest variants of TNFS (Kim–Barbulescu, Kim–Jeong) seems most promising for GF(pⁿ) where n is composite
- We need record computations if we want to extrapolate from asymptotic complexities
- The asymptotic complexities do not correspond to a fixed n, but to a ratio between n and p in Q = pⁿ

Complexities

large characteristic $p = L_Q[\alpha]$, $\alpha > 2/3$: (64/9)^{1/3} $\simeq 1.923$ NFS special p: (32/9)^{1/3} $\simeq 1.526$ SNFS (e.g. Thomé's talk)

medium characteristic $p = L_Q[\alpha], 1/3 < \alpha < 2/3$: $(96/9)^{1/3} \simeq 1.201$ prime n NFS-HD (Conjugation) $(48/9)^{1/3} \simeq 1.747$ composite n,
best case of TNFS: when parameters fit perfectlyspecial p: $(64/9)^{1/3} \simeq 1.923$ $(32/9)^{1/3} \simeq 1.526$ NFS-HD+Joux-Pierrot'13 $(32/9)^{1/3} \simeq 1.526$ composite n, best case of STNFS

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_p[z]$, f and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_p[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$ Diagram:

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_p[z]$, f and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_p[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$ Diagram: Large p:

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_p[z]$, f and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_p[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$ Diagram: Large p:

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_p[z]$, f and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_p[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$

Diagram: Medium p: [Joux Lercier Smart Vercauteren 06]

NFS parameters

- factor base =
 {prime ideals p_i, |Norm(p_i)| ≤ B}
 ∪{prime ideals r_j, |Norm(r_i)| ≤ B}
- we need as many relations as prime ideals p_i, r_j to get a square matrix
- balance the relation collection time with the linear algebra time

Algebraic Norms

The asymptotic complexity is determined by the *size of norms* of the elements $\sum_{0 \le i < t} a_i \alpha^i$ in the relation collection step. We want both sides *smooth* to get a relation.

```
"An ideal is B-smooth" approximated by "its norm is B-smooth".
```

```
Smoothness bound: B = L_{p^n}[1/3, \beta]
Size of norms: L_{p^n}[2/3, c_N]
Complexity: minimize c_N in the formulas.
To reduce NFS complexity, reduce size of norms asymptotically.
\rightarrow very hard task.
```

Extended TNFS [Kim Barbulescu 16]

- Tower NFS (TNFS): Barbulescu Gaudry Kleinjung
- Extended TNFS: Kim–Barbulescu, Kim–Jeong, Sarkar–Singh
- Tower of number fields
- deg(h) will play the role of t, where $a_0 + a_1\alpha + \ldots + a_{t-1}\alpha^{t-1}$
- $a_0 a_1 \alpha$ becomes $(a_{00} + a_{01} \tau) (a_{10} + a_{11} \tau) \alpha$

Complexities

large characteristic $p = L_Q[\alpha]$, $\alpha > 2/3$: (64/9)^{1/3} $\simeq 1.923$ NFS special p: (32/9)^{1/3} $\simeq 1.526$ SNFS (e.g. Thomé's talk)

medium characteristic $p = L_Q[\alpha], 1/3 < \alpha < 2/3$: $(96/9)^{1/3} \simeq 1.201$ prime n NFS-HD (Conjugation) $(48/9)^{1/3} \simeq 1.747$ composite n,
best case of TNFS: when parameters fit perfectlyspecial p: $(64/9)^{1/3} \simeq 1.923$ $(64/9)^{1/3} \simeq 1.526$ NFS-HD+Joux-Pierrot'13 $(32/9)^{1/3} \simeq 1.526$ composite n, best case of STNFS

Largest record computations in $GF(p^n)$ with NFS¹

Finite	Size	Cost:	Authors	sieving
field	of p ⁿ	CPU days	Authors	dim
$GF(p^{12})$	203	11	[HAKT13]	7
$GF(p^6)$	422	9,520	[GGMT17]	3
$GF(p^5)$	324	386	[GGM17]	3
$GF(p^4)$	392	510	[BGGM15b]	2
$GF(p^3)$	593	8,400	[GGM16]	2
$GF(p^2)$	595	175	[BGGM15a]	2
GF(p)	768	1,935,825	[KDLPS17]	2

None used TNFS, only NFS and NFS-HD were implemented.

¹Data extracted from DiscreteLogDB

Limitations of asymptotic complexity

use: Norm_{$$K_f$$} $(a(\alpha)) = \text{Res}(a(x), f(x))$ (for monic f)

$$|\operatorname{\mathsf{Res}}(a,f)| \leq (d_a+1)^{d_f/2} (d_f+1)^{d_a/2} \|a\|_\infty^{d_f} \|f\|_\infty^{d_a}$$

- based on bounds on coefficient size of polynomials, bounds on algebraic norms
- ► Kalkbrener, Bistritz–Lifshitz bounds are not satisfying enough
- no record computation available to re-scale the asymptotic formulas

Finding a better estimation and designing an implementation at the same time

Menezes–Sarkar–Singh Estimations

curve	log ₂ p ⁿ	log ₂ p	variant	deg <i>h</i>	cost
BN	3072	256	TNFS with constants	4	2^{136}
BN	3732	311	TNFS without constants	4	2^{128}
BN	3072	256	STNFS with constants	6	2^{150}
BN	4596	383	STNFS without constants	6	2 ¹²⁸
BLS	4608	384	TNFS with constants	4	2 ¹⁵⁶
BLS	4608	384	TNFS without constants	4	2 ¹⁴⁰
BLS	4608	384	STNFS with constants	6	2 ¹⁸⁹
BLS	4608	384	STNFS without constants	6	2^{132}

Simulation

- compute record-looking polynomials
- \blacktriangleright simulate relation collection \rightarrow extrapolate the number of relations
- estimate linear algebra
- neglect individual log

Questions:

- how to simulate well without being too slow?
- how to model the filtering step (packing the matrix)?
- by how much balancing relation collection and linear algebra?

Barbulescu-Duquesne simulation

Estimation of cost:

$$\frac{2B}{\mathcal{A}\log B}\rho\left(\frac{\log_2 N_f}{\log_2 B}\right)^{-1}\rho\left(\frac{\log_2 N_g}{\log_2 B}\right)^{-1}+2^7\frac{B^2}{\mathcal{A}(\log B)^2(\log_2 B)^2}$$

where $A \leq n/ \operatorname{gcd}(\operatorname{deg} h, n/\operatorname{deg} h)$, ρ is the Dickman- ρ function

- takes into account Galois automorphisms
- takes into account filtering (reduced matrix)
- assume the coefficients of h, f are minimal
- assume $\alpha(f), \alpha(g) = 0$
- balance cost of sieving pprox cost of linear algebra

Barbulescu-Duquesne estimates

curve	$\log_2 p^n$	log ₂ p	deg h	cost
BN	3072	256	6	2 ^{99,69}
BN	5534	462	6	2^{128}
BLS	5530	461	6	2^{128}

Simulation without sieving

space: $S = \{\sum_{0 \le i < d_h} a_i y^i + (\sum_{0 \le i < d_h} b_i y^i)x, |a_i|, |b_i| < A\}$ volume: $Vol = 2^{2d_h - 1}A^{2d_h}$ algebraic norm: $N = \operatorname{Norm}_{K_f}(a(\alpha_h, \alpha_f)) = \operatorname{Res}_y(\operatorname{Res}_x(a(x, y), f(x)), h(y))$ (monic h, f) N is B-smooth ($N = \prod_{p_i < B} p_i^{e_i}$) with probability

$$u = rac{\log N + lpha}{\log B}, \ \mathsf{Pr} =
ho(u) + (1 - \gamma) rac{
ho(u - 1)}{\log N}$$

where $\gamma \approx$ 0.577 is Euler γ constant, ρ is Dickman- ρ function

Simulation without sieving

Implementation of Barbulescu–Duquesne technique Variants:

- compute $\alpha(f), \alpha(g)$ (w.r.t. subfield)
- ▶ select *h*, *f*, *g* with good low $\alpha(f) < -3, \alpha(g) < -4$
- Monte-Carlo simulation with 10⁶ to 10⁹ points in S taken at random. For each point:
 - 1. compute its algebraic norm N_f, N_g in each number field
 - 2. smoothness probability with Dickman- ρ
- Average smoothness probability over the subset of points \rightarrow estimation of the total number of possible relations in ${\cal S}$
- dichotomy to approach the best balanced parameters: smoothness bound *B*, coefficient bound *A*.

Observations

 $(a) = (\sum_{i=0}^{d_h-1} a_i \tau), (b) = (\sum_{i=0}^{d_h-1} b_i \tau)$ randomly chosen are coprime with probability $1/\zeta_{K_h}(2)$ Much different than for integers: $1/\zeta(2) = 6/\pi^2 \approx 0.6$

$$\zeta_{K_h}(s) = \sum_{n \in \mathbb{N}} \frac{1}{n^s} (\# \text{ideals of norm } n \text{ in } K_h)$$

$$\begin{split} h &= x^2 + 1: \ 1/\zeta_{K_h}(2) \approx 0.6 \\ h &= x^2 - x + 4: \ 1/\zeta_{K_h}(2) \approx 0.469 \\ h &= x^2 + x - 1: \ 1/\zeta_{K_h}(2) \approx 0.861 \\ \end{split}$$
Experimentally: a good α comes with a low coprime probability

Future work

- How to rank polynomials according to their smoothness properties? α function (S. Singh) faster, generalized Murphy's E function
- How to build the factor basis?
- How to deal with generalized bad ideals?
- How to sieve very efficiently in even dimension 4 to 24?

Thank you for your attention.