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Cryptographic pairing: black-box properties

(G1,4),(G2,4), (G, ) three cyclic groups of large prime order ¢
Bilinear Pairing: map e : G1 x G — G

1. bilinear: e(P1 + P2, Q) = e(P1, Q) - e(P2, Q),
e(P, Q1+ Q) =¢(P,Q1)-e(P,Q2)

2. non-degenerate: e(g1,g2) # 1 for (g1) = G1, (&) = G2
3. efficiently computable.

Mostly used in practice:

e([a]P, [b]Q) = e([b]P, [a] Q) = e(P, Q)™ .

~» Many applications in asymmetric cryptography.

N
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Examples of application

» 1984: idea of identity-based encryption formalized by Shamir

» 1999: first practical identity-based cryptosystem of
Sakai-Ohgishi-Kasahara

» 2000: constructive pairings, Joux's tri-partite key-exchange
(Triffie-Hellman)

» 2001: IBE of Boneh-Franklin, short signatures
Boneh-Lynn-Shacham

Rely on

» Discrete Log Problem (DLP): given g,y € G, compute x s.t.
g~ = y Diffie-Hellman Problem (DHP)

> bilinear DLP and DHP
Given G1,G>,G71, 41,8, &7 and y € G, compute P € G;
sit. e(P,g2) =y, or Qe Gy sit. e(g1,Q) =y
if g7 =y then e(gr, &) = e(g1,85) = 87 =y

> pairing inversion problem
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Pairing setting: elliptic curves

E/Fp : y?2 =x3+ax + b, a,beF, p>5

> proposed in 1985 by Koblitz, Miller

» E(F,) has an efficient group law (chord an tangent rule) — G
» #E(Fp) = p+1—tr, trace tr: [tr| < 2,/p

» efficient group order computation (point counting)

» large subgroup of prime order £ s.t. /| p+1— tr and ¢
coprime to p

> E[{] ~Z/VZ & Z]VZ (for crypto)

» only generic attacks against DLP on well-chosen genus 1 and
genus 2 curves

» optimal parameter sizes (log, ¢ = log, p)
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Pairings

1948 Weil pairing (accouplement)

1958 Tate pairing

1985 Miller, Koblitz: use Elliptic Curves in crypto

1986 Miller's algorithm to compute pairings

1988 Kaliski's implementation E/F1; : y? = x3 — x (PhD at MIT)
At that time:

> easy to use supersingular curves for ECC: group order known
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Supersingular elliptic curves

Example over F,, p > 5

E:y2:X3—|—X/IFp, p=3mod4

st. t =0, #E(Fp,) = p+ 1.
take ps.t. p+1 =47 where ¢ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Riick attacks

3 pairing e : E(FF,) into IF > where DLP is much easier.
Do not use supersingular curves (1993-1999)

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a
163-bit supersingular curve, where Gt C F > of 326 bits.
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Pairing-based cryptography

1999: Frey—Muller—Riick: actually, Miller Algorithm can be
much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, Gt C 2 of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E(Fp)[l] X E(Fpn)[l] —— Fpri e([a]P, [b]Q) = e(P, Q)%
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Pairing-based cryptography
1999: Frey—Muller—Riick: actually, Miller Algorithm can be
much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, Gt C 2 of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

e : E(Fp)[l] X E(Fpn)[l] —— Fpri e([a]P, [b]Q) = e(P, Q)%

Attacks ] I

» inversion of e : hard problem (exponential)

> discrete logarithm computation in E(Fp) : hard problem
(exponential, in O(v/7))

> discrete logarithm computation in F, : easier,
subexponential — take a large enough field
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Pairing-friendly curves

0| p"—1, E[{] C E(Fpn), n embedding degree

Tate Pairing: e: E(Fpn)[(] x E(Fpn)/CE(Fpn) — Fin/(F5n)*
When nis small i.e. 1 < n < 24, the curve is pairing-friendly.
This is very rare: For a given curve, logn ~ log/
([Balasubramanian Koblitz]).

p p?, p° p>, p*, p° p*2 p'® p'®

"

Curve ‘ supersingular MNT BN, BLS12 KSS16 KSS18

MNT, n=6:

p(x) =4x2+1, t(x) = 1 £ 2x, #E(Fp)x> F2x + 1
BN, n=12:

p(x) = 36x* + 36x3 + 24x2 + 6x + 1, t(x) = 6x2 + 1,
r(x) = 36x* + 36x3 + 18x2 + 6x + 1

More in Aranha’s talk.
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security estimates

[Lenstra-Verheul'01] estimates RSA key-sizes
The usual security estimates use

» the asymptotic complexity of the best known algorithm
(here NFS)

> the latest record computations (now 768-bit)

> extrapolation
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Number Field Sieve Algorithm

Subexponential asymptotic complexity:

A

Lpolar, c] = elcto(1))(log p")* (log log p")*~*

«a = 1: exponential

a = 0: polynomial

0 < a < 1: sub-exponential (including NFS)
polynomial selection (less than 10% of total time)
relation collection L,n[1/3, c]

linear algebra L,0[1/3, c]

individual discrete log computation Lpn[1/3,c" < ]
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Example for RSA key sizes

log, N in bits

3,072
2,816

2,560

2,304
2,048
1,792
1,536
1,280
1,024

768

512

s = logy(Ln[1/3,1.923]) — 14
s.t. logo N =512 <+ s = 50 bits
s = log,(Ln[1/3,1.923]) — 8

s.t. 768 <+ 67 bits

| | |

| |
48 64 80 96 112 128
Equivalent symmetric security in bits
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Pairing key-sizes in the 2000's

Assumed: DLP in prime fields [F, as hard as in medium and large
characteristic fields [Fg
— take the same size as for prime fields.

Security | log, | finite | n | log, deg P P curve
level 1 field p | p=P(u)
128 256 | 3072 3072 | (prime field)
256 | 3072 | 2 | 1536 | no poly 6 supersingular
128 256 | 3072 | 3 | 1024 | no poly 4 supersingular
256 | 3072 | 12 | 256 4 1 Barreto-Naehrig
640 | 7680 | 12 | 640 4 1-5/3 BN
427 | 7680 | 12 | 640 6 3/2 BLS12
192 384 | 9216 | 18 | 512 8 4/3 KSS18
384 | 7680 | 16 | 480 10 5/4 KSS16
384 | 11520 | 24 | 480 10 5/4 BLS24
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Small, medium, large characteristic

Q = p", the characteristic p is
» small: p = Lo, c] where e < 1/3
» medium: p = Lg[a, c] where 1/3 < a < 2/3
» large: p = Lg[a, c] where a > 2/3
» boundary cases: p = Lg[1/3,c] and p = Lg[2/3, c]
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Estimating key sizes for DL in GF(p")

GF(p") much less studied than GF(p) or integer factorization.
» 2000 LUC, XTR cryptosystems: multiplicative subgroup of
prime order | ®,(p) (cyclotomic subgroup) of GF(p?), GF(p®)
» what is the hardness of computing DL in GF(p"), n = 2,67
» 2005 [Granger Vercauteren] Lg[1/2]
» 2006 Joux—Lercier—Smart—Vercauteren Lg[1/3,2.423]
(NFS-HD)

> rising of pairings: what is the security of DL in
GF(2™),GF(3™M),GF(p'?)?
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Asymptotic complexities

Needed:

» asymptotic complexity (constants «;, c)

» record computations to scale the shape (guess the o(1))
Asymptotic complexities now:

» For tiny characteristic: quasi-polynomial

» For small characteristic: L(«) for o < 1/3

» For medium and large characteristic: L(1/3,c + o(1))
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Asymptotic complexities

Needed:

» asymptotic complexity (constants «;, c)

» record computations to scale the shape (guess the o(1))
Asymptotic complexities now:

» For tiny characteristic: quasi-polynomial

» For small characteristic: L(«) for o < 1/3

» For medium and large characteristic: L(1/3,c + o(1))

What is ¢ for medium and large characteristic?
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Theoretical improvements and records

theoretical improvements record computations
2013  Joux—Pierrot (SNFS for pairings)
2014 MNFS, Conjugation GF(p?)
2015 TNFS GF(p?), GF(p3), GF(p*)
2016 Sarkar-Singh, exTNFS GF(p?

2017 more exTNFS NFS-HD: GF(p®), GF(p®)
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Estimating key sizes for DL in GF(p")

> Latest variants of TNFS (Kim—Barbulescu, Kim—Jeong) seems
most promising for GF(p") where n is composite

» We need record computations if we want to extrapolate from
asymptotic complexities

» The asymptotic complexities do not correspond to a fixed n,
but to a ratio between n and p in Q@ = p”
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Complexities

large characteristic p = Lg[a], a > 2/3:

(64/9)/3 ~1.923 NFS
special p:
(32/9)1/3 ~ 1526 SNFS (e.g. Thomé's talk)

medium characteristic p = Lg[a], 1/3 < a < 2/3:

(96/9)}/3 ~ 1.201 prime n NFS-HD (Conjugation)
(48/9)'/3 ~ 1.747 composite n,
best case of TNFS: when parameters fit perfectly
special p:
(64/9)1/3 ~ 1.923 NFS-HD+Joux—Pierrot'13
(32/9)1/3 ~ 1526  composite n, best case of STNFS

18/35



The NFS diagram for DLP in [},

Let f, g be two polynomials defining two number fields
and such that in Fp[z], f and g have a common irreducible factor
©(z) € Fp[z] of degree n, s.t. one can define the extension

Fpr = Fplz]/((2))

Diagram:
Z[x]
X — V \’_> Qg
ZIx]/(f(x)) ZIx]/(g

af,_>\ AHZ

Fpn = p[z]/(‘P
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The NFS diagram for DLP in [},

Let f, g be two polynomials defining two number fields
and such that in Fp[z], f and g have a common irreducible factor
©(z) € Fp[z] of degree n, s.t. one can define the extension
For = Folz]/(4(2))
Diagram: Large p:
ag — a1x € Z[x]

XHV \Hag
(a

(a0 — arcrf) Z[x]/(f(x)) Z[x]/(g

smooth?
af r—>\ A — Z

Fpn = p[z]/(‘P

0 — a1g)
smooth?

19/35



The NFS diagram for DLP in [},

Let f, g be two polynomials defining two number fields
and such that in Fp[z], f and g have a common irreducible factor
©(z) € Fp[z] of degree n, s.t. one can define the extension
For = Folz]/(4(2))
Diagram: Large p:
ag — a1x € Z[x]

XHV \Hag
(a

(ao — a Oéf) — aix )
smoo'sh? ZIX/(f(x) Z[x)/(& somooth?g
— H qf" \ / — Htj‘?i

af Qg+ Z
Fpn = p[z]/(‘P

relation: “>" e; vlog q; = > eJ’- vlog t;"
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The NFS diagram for DLP in [},

Let f, g be two polynomials defining two number fields
and such that in Fp[z], f and g have a common irreducible factor
©(z) € Fp[z] of degree n, s.t. one can define the extension

Fpr = Fplz]/(9(2))

Diagram:  Medium p: [Joux Lercier Smart Vercauteren 06]
ag — a1x + arx? € Z[x]

x»—)V \'—*Ofg

(ap + a1af + agaf 2 /(F 7[x/(g

smooth?
of »—>\ A — Z

Fpn = Fp[2]/(¢(2)

(a0 + arag + 82042)
smooth?
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NFS parameters

» factor base =
{prime ideals p;, | Norm(p;)| < B}
U{prime ideals t;, | Norm(v;)| < B}

» we need as many relations as prime ideals p;, t;
to get a square matrix

> balance the relation collection time with the linear algebra
time
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Algebraic Norms

The asymptotic complexity is determined by the size of norms of
the elements } o, , aja' in the relation collection step.
We want both sides smooth to get a relation.

“An ideal is B-smooth” approximated by
“its norm is B-smooth".

Smoothness bound: B = Ly [1/3, ]

Size of norms: Lpn[2/3, cp]

Complexity: minimize ¢y in the formulas.

To reduce NFS complexity, reduce size of norms asymptotically.
— very hard task.
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Extended TNFS [Kim Barbulescu 16]

» Tower NFS (TNFS): Barbulescu Gaudry Kleinjung
Extended TNFS: Kim—Barbulescu, Kim—Jeong, Sarkar-Singh

Tower of number fields

v

v

1

v

deg(h) will play the role of t, where ag + ajav + ...+ ar_1a'™

v

ap — ay« becomes (ago + ao17) — (a10 + a117)«

(@00 + a017)— Kn[x]/(f(x)) Knlx]/(g(x)) (200 + a017)—

(a0 + aun7)orr (a0 + aun7)og
smooth? smooth?

Kn = Q[r]/(h(7))

Q
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Complexities

large characteristic p = Lg[a], a > 2/3:

(64/9)/3 ~1.923 NFS
special p:
(32/9)1/3 ~ 1526 SNFS (e.g. Thomé's talk)

medium characteristic p = Lg[a], 1/3 < a < 2/3:

(96/9)}/3 ~ 1.201 prime n NFS-HD (Conjugation)
(48/9)'/3 ~ 1.747 composite n,
best case of TNFS: when parameters fit perfectly
special p:
(64/9)1/3 ~ 1.923 NFS-HD+Joux—Pierrot'13
(32/9)1/3 ~ 1526  composite n, best case of STNFS
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Largest record computations in GF(p") with NFS!

Finite Size Cost: Authors sieving

field of p”  CPU days dim
GF(p'?) 203 11 [HAKT13] 7
GF(p®) 422 9,520 [GGMT17] 3
GF(p®) 324 386 [GGM17] 3
GF(p*) 392 510 [BGGM15b] 2
GF(p®) 593 8,400 [GGM16] 2
GF(p?) 595 175 [BGGM15a] 2
GF(p) 768 1,935,825 [KDLPS17] 2

None used TNFS, only NFS and NFS-HD were implemented.

1Data extracted from DiscreteLogDB
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Limitations of asymptotic complexity

use: Normg, (a(a)) = Res(a(x), f(x)) (for monic f)

| Res(a, £)] < (da +1)%/2(dr + 1)%/2||al| || |32

» based on bounds on coefficient size of polynomials, bounds on
algebraic norms
» Kalkbrener, Bistritz—Lifshitz bounds are not satisfying enough
> no record computation available to re-scale the asymptotic
formulas
Finding a better estimation and designing an implementation at
the same time
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Menezes—Sarkar—Singh Estimations

curve log, p"  log, p variant degh cost
BN 3072 256 TNFS with constants 4 2136
BN 3732 311  TNFS without constants 4 2128
BN 3072 256 STNFS with constants 6 2150
BN 4596 383  STNFS without constants 6 2128
BLS 4608 384 TNFS with constants 4 21
BLS 4608 384 TNFS without constants 4 2140
BLS 4608 384 STNFS with constants 6 218
BLS 4608 384  STNFS without constants 6 2132

26
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Simulation

» compute record-looking polynomials

» simulate relation collection — extrapolate the number of
relations

> estimate linear algebra
» neglect individual log
Questions:
» how to simulate well without being too slow?
» how to model the filtering step (packing the matrix)?

» by how much balancing relation collection and linear algebra?
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Barbulescu-Duquesne simulation

Estimation of cost:

2B <|0g2 Nf>—1 (Iog2 Ng>—1 57 B?
Alog B’ log, B log, B A(log B)?(log, B)?

where A < n/gcd(deg h, n/ deg h),

p is the Dickman-p function
> takes into account Galois automorphisms
» takes into account filtering (reduced matrix)
» assume the coefficients of h, f are minimal
» assume «(f),a(g) =0

» balance cost of sieving = cost of linear algebra
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Barbulescu-Duquesne estimates

curve log, p" logop degh  cost
BN 3072 256 6 299069
BN 5534 462 6 2128
BLS 5530 461 6 2128
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Simulation without sieving

space: S = {Yo<icq, iy’ + (Xo<ica, biy')x, |ail,|bil < A}
volume: Vol = 229n—1A2d
algebraic norm:

N = Norm, (a(an, ar)) = Resy (Resy(a(x, y), f(x)), h(y))
(monic h, f)

N is B-smooth (N =[], .g p;') with probability

log N + o p(u—1)
ogB " p(u) +(1—7) log N

where v =~ 0.577 is Euler v constant,
p is Dickman-p function
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Simulation without sieving

Implementation of Barbulescu—Duquesne technique
Variants:

>

>

>

compute «(f), a(g) (w.r.t. subfield)
select h, f, g with good low a(f) < —3,a(g) < —4

Monte-Carlo simulation with 10° to 10° points in S taken at
random. For each point:

1. compute its algebraic norm N¢, Ng in each number field

2. smoothness probability with Dickman-p
Average smoothness probability over the subset of points
— estimation of the total number of possible relations in S

dichotomy to approach the best balanced parameters:
smoothness bound B, coefficient bound A.
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MNT curves, G C [Fpe
log, VoI(S)

—e— Simulation in Fpe
160 —Lpe[1/3, 1.923]

128 T T

96

64|

32

! ! L ! ! !
1024 2048 3072 4096 5120 6144
log, p”
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Observations

a) = Z‘.’i_l a;t), (b) = Z‘l_l b;T) randomly chosen are
i=0 i=0

coprime with probability 1/(x, (2)
Much different than for integers: 1/((2) = 6/72 ~ 0.6

Ck,(s) = Z %(#ideals of norm n in Kp)
neN
h=x?+1: 1/(k, (2) =~ 0.6
h=x2—x+4: 1/, (2) ~ 0.469
h=x?+x—1: 1/Ck,(2) ~ 0.861
Experimentally: a good o comes with a low coprime probability
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Future work

» How to rank polynomials according to their smoothness
properties? « function (S. Singh) faster, generalized
Murphy's E function

How to build the factor basis?

v

How to deal with generalized bad ideals?

v

How to sieve very efficiently in even dimension 4 to 247

v
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Thank you for your attention.
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