Estimating size requirements for pairings: Simulating the Tower-NFS algorithm in GF(p^{n})

Quentin Deschamps, Aurore Guillevic, Shashank Singh

ENS Lyon, Inria Nancy, Loria, CNRS, Université de Lorraine
November 15, 1027
Elliptic Curve Cryptography Conference ECC17-Nijmegen, Netherlands

ENS DE LYON

Cryptographic pairing: black-box properties

$\left(\mathbf{G}_{1},+\right),\left(\mathbf{G}_{2},+\right),\left(\mathbf{G}_{T}, \cdot\right)$ three cyclic groups of large prime order ℓ Bilinear Pairing: map e: $\mathbf{G}_{1} \times \mathbf{G}_{2} \rightarrow \mathbf{G}_{T}$

1. bilinear: $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) \cdot e\left(P_{2}, Q\right)$,

$$
e\left(P, Q_{1}+Q_{2}\right)=e\left(P, Q_{1}\right) \cdot e\left(P, Q_{2}\right)
$$

2. non-degenerate: $e\left(g_{1}, g_{2}\right) \neq 1$ for $\left\langle g_{1}\right\rangle=\mathbf{G}_{1},\left\langle g_{2}\right\rangle=\mathbf{G}_{2}$
3. efficiently computable.

Mostly used in practice:

$$
e([a] P,[b] Q)=e([b] P,[a] Q)=e(P, Q)^{a b}
$$

\leadsto Many applications in asymmetric cryptography.

Examples of application

- 1984: idea of identity-based encryption formalized by Shamir
- 1999: first practical identity-based cryptosystem of Sakai-Ohgishi-Kasahara
- 2000: constructive pairings, Joux's tri-partite key-exchange (Triffie-Hellman)
- 2001: IBE of Boneh-Franklin, short signatures Boneh-Lynn-Shacham

Rely on

- Discrete Log Problem (DLP): given $g, y \in \mathbf{G}$, compute x s.t. $g^{x}=y$ Diffie-Hellman Problem (DHP)
- bilinear DLP and DHP

Given $\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{T}, g_{1}, g_{2}, g_{T}$ and $y \in \mathbf{G}_{T}$, compute $P \in \mathbf{G}_{1}$ s.t. $e\left(P, g_{2}\right)=y$, or $Q \in \mathbf{G}_{2}$ s.t. $e\left(g_{1}, Q\right)=y$
if $g_{T}^{\times}=y$ then $e\left(g_{1}^{\times}, g_{2}\right)=e\left(g_{1}, g_{2}^{\times}\right)=g_{T}^{\times}=y$

- pairing inversion problem

Pairing setting: elliptic curves

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}+a x+b, a, b \in \mathbb{F}_{p}, p \geq 5
$$

- proposed in 1985 by Koblitz, Miller
- $E\left(\mathbb{F}_{p}\right)$ has an efficient group law (chord an tangent rule) $\rightarrow \mathbf{G}$
- $\# E\left(\mathbb{F}_{p}\right)=p+1$-tr, trace tr: $|t r| \leq 2 \sqrt{p}$
- efficient group order computation (point counting)
- large subgroup of prime order ℓ s.t. $\ell \mid p+1-t r$ and ℓ coprime to p
- $E[\ell] \simeq \mathbb{Z} / \ell \mathbb{Z} \oplus \mathbb{Z} / \ell \mathbb{Z}$ (for crypto)
- only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
- optimal parameter sizes $\left(\log _{2} \ell=\log _{2} p\right)$

Pairings

1948 Weil pairing (accouplement)
1958 Tate pairing
1985 Miller, Koblitz: use Elliptic Curves in crypto
1986 Miller's algorithm to compute pairings
1988 Kaliski's implementation $E / \mathbb{F}_{11}: y^{2}=x^{3}-x(\mathrm{PhD}$ at MIT $)$ At that time:

- easy to use supersingular curves for ECC: group order known

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.
1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks
\exists pairing $e: E\left(\mathbb{F}_{p}\right)$ into $\mathbb{F}_{p^{2}}$ where DLP is much easier.
Do not use supersingular curves (1993-1999)
But computing a pairing is very slow:
[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 326 bits.

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Attacks

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b} \\
& \text { Attacks }
\end{aligned}
$$

- inversion of e : hard problem (exponential)

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b} \\
& \text { Attacks }
\end{aligned}
$$

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)
- discrete logarithm computation in $\mathbb{F}_{p^{n}}^{*}$: easier, subexponential \rightarrow take a large enough field

Pairing-friendly curves

$\ell \mid p^{n}-1, E[\ell] \subset E\left(\mathbb{F}_{p^{n}}\right)$, n embedding degree
Tate Pairing: $e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right) / \ell E\left(\mathbb{F}_{p^{n}}\right) \rightarrow \mathbb{F}_{p^{n}}^{*} /\left(\mathbb{F}_{p^{n}}^{*}\right)^{\ell}$
When n is small i.e. $1 \leqslant n \leqslant 24$, the curve is pairing-friendly.
This is very rare: For a given curve, $\log n \sim \log \ell$ ([Balasubramanian Koblitz]).

p^{n}	p^{2}, p^{6}	p^{3}, p^{4}, p^{6}	p^{12}	p^{16}	p^{18}
Curve	supersingular	MNT	BN, BLS12	KSS16	KSS18

MNT, $n=6$:
$p(x)=4 x^{2}+1, t(x)=1 \pm 2 x, \# E\left(\mathbb{F}_{p}\right) x^{2} \mp 2 x+1$
BN, $n=12$:
$p(x)=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1, t(x)=6 x^{2}+1$,
$r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1$
More in Aranha's talk.

security estimates

[Lenstra-Verheul'01] estimates RSA key-sizes
The usual security estimates use

- the asymptotic complexity of the best known algorithm (here NFS)
- the latest record computations (now 768-bit)
- extrapolation

Number Field Sieve Algorithm

Subexponential asymptotic complexity:

$$
L_{p^{n}}[\alpha, c]=e^{(c+o(1))\left(\log p^{n}\right)^{\alpha}\left(\log \log p^{n}\right)^{1-\alpha}}
$$

- $\alpha=1$: exponential
- $\alpha=0$: polynomial
- $0<\alpha<1$: sub-exponential (including NFS)

1. polynomial selection (less than 10% of total time)
2. relation collection $L_{p^{n}}[1 / 3, c]$
3. linear algebra $L_{p^{n}}[1 / 3, c]$
4. individual discrete \log computation $L_{p^{n}}\left[1 / 3, c^{\prime}<c\right]$

Example for RSA key sizes

Pairing key-sizes in the 2000's

Assumed: DLP in prime fields \mathbb{F}_{p} as hard as in medium and large characteristic fields \mathbb{F}_{Q}
\rightarrow take the same size as for prime fields.

Security level	$\log _{2}$ ℓ	finite field	n	$\log _{2}$ p	$\operatorname{deg} P$ $p=P(u)$	ρ	curve
128	256	3072		3072	(prime field)		
	256	3072	2	1536	no poly	6	supersingular
128	256	3072	3	1024	no poly	4	supersingular
	256	3072	12	256	4	1	Barreto-Naehrig
192	640	7680	12	640	4	$1 \rightarrow 5 / 3$	BN
	427	7680	12	640	6	$3 / 2$	BLS12
	384	9216	18	512	8	$4 / 3$	KSS18
	384	7680	16	480	10	$5 / 4$	KSS16
	384	11520	24	480	10	$5 / 4$	BLS24

Small, medium, large characteristic

$Q=p^{n}$, the characteristic p is

- small: $p=L_{Q}[\alpha, c]$ where $\alpha<1 / 3$
- medium: $p=L_{Q}[\alpha, c]$ where $1 / 3<\alpha<2 / 3$
- large: $p=L_{Q}[\alpha, c]$ where $\alpha>2 / 3$
- boundary cases: $p=L_{Q}[1 / 3, c]$ and $p=L_{Q}[2 / 3, c]$

Estimating key sizes for DL in $\mathrm{GF}\left(p^{n}\right)$

$\mathrm{GF}\left(p^{n}\right)$ much less studied than $\mathrm{GF}(p)$ or integer factorization.

- 2000 LUC, XTR cryptosystems: multiplicative subgroup of prime order $\mid \Phi_{n}(p)$ (cyclotomic subgroup) of $\operatorname{GF}\left(p^{2}\right), \operatorname{GF}\left(p^{6}\right)$
- what is the hardness of computing DL in $\operatorname{GF}\left(p^{n}\right), n=2,6$?
- 2005 [Granger Vercauteren] $L_{Q}[1 / 2]$
- 2006 Joux-Lercier-Smart-Vercauteren $L_{Q}[1 / 3,2.423]$ (NFS-HD)
- rising of pairings: what is the security of DL in $\operatorname{GF}\left(2^{n}\right), \operatorname{GF}\left(3^{m}\right), \operatorname{GF}\left(p^{12}\right) ?$

Asymptotic complexities

Needed:

- asymptotic complexity (constants α, c)
- record computations to scale the shape (guess the $o(1)$)

Asymptotic complexities now:

- For tiny characteristic: quasi-polynomial
- For small characteristic: $L(\alpha)$ for $\alpha<1 / 3$
- For medium and large characteristic: $L(1 / 3, c+o(1))$

Asymptotic complexities

Needed:

- asymptotic complexity (constants α, c)
- record computations to scale the shape (guess the $o(1)$)

Asymptotic complexities now:

- For tiny characteristic: quasi-polynomial
- For small characteristic: $L(\alpha)$ for $\alpha<1 / 3$
- For medium and large characteristic: $L(1 / 3, c+o(1))$

What is c for medium and large characteristic?

Theoretical improvements and records

	theoretical improvements
2013	Joux-Pierrot (SNFS for pairings)
2014	MNFS, Conjugation
2015	TNFS
2016	Sarkar-Singh, exTNFS
2017	more exTNFS

record computations $\mathrm{GF}\left(p^{2}\right)$
$\operatorname{GF}\left(p^{2}\right), \operatorname{GF}\left(p^{3}\right), \operatorname{GF}\left(p^{4}\right)$
$\mathrm{GF}\left(p^{3}\right)$
NFS-HD: $\operatorname{GF}\left(p^{5}\right), \operatorname{GF}\left(p^{6}\right)$

Estimating key sizes for DL in GF($\left.p^{n}\right)$

- Latest variants of TNFS (Kim-Barbulescu, Kim-Jeong) seems most promising for $\operatorname{GF}\left(p^{n}\right)$ where n is composite
- We need record computations if we want to extrapolate from asymptotic complexities
- The asymptotic complexities do not correspond to a fixed n, but to a ratio between n and p in $Q=p^{n}$

Complexities

large characteristic $p=L_{Q}[\alpha], \alpha>2 / 3$:
$(64 / 9)^{1 / 3} \simeq 1.923 \quad$ NFS
special p :
$(32 / 9)^{1 / 3} \simeq 1.526$ SNFS (e.g. Thomé's talk)
medium characteristic $p=L_{Q}[\alpha], 1 / 3<\alpha<2 / 3$:
$(96 / 9)^{1 / 3} \simeq 1.201 \quad$ prime n NFS-HD (Conjugation)
$(48 / 9)^{1 / 3} \simeq 1.747$ composite n,
best case of TNFS: when parameters fit perfectly
special p :
$(64 / 9)^{1 / 3} \simeq 1.923$ NFS-HD+Joux-Pierrot'13
$(32 / 9)^{1 / 3} \simeq 1.526$ composite n, best case of STNFS

The NFS diagram for DLP in $\mathbb{F}_{p^{n}}^{*}$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z], f$ and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[z] /(\varphi(z))$
Diagram:

The NFS diagram for DLP in $\mathbb{F}_{p^{n}}^{*}$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z], f$ and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[z] /(\varphi(z))$
Diagram: Large p :

The NFS diagram for DLP in $\mathbb{F}_{p^{n}}^{*}$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z], f$ and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[z] /(\varphi(z))$
Diagram: Large p :

$$
a_{0}-a_{1} x \in \mathbb{Z}[x]
$$

$$
\begin{gathered}
\left(a_{0}-a_{1} \alpha_{f}\right) \\
\text { smooth? } \\
=\prod \mathfrak{q}_{i}^{e_{i}}
\end{gathered}
$$

$a_{0}-a_{1} x \in \mathbb{Z}[x]$
$x \mapsto \alpha_{f}$
relation: " $\sum e_{i} \operatorname{vlog} \mathfrak{q}_{i}=\sum e_{j}^{\prime} \operatorname{vog} \mathfrak{r}_{j}$ "

$$
x \mapsto \alpha_{f}
$$

The NFS diagram for DLP in $\mathbb{F}_{p^{n}}^{*}$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z], f$ and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[z] /(\varphi(z))$
Diagram: Medium p : [Joux Lercier Smart Vercauteren 06]

NFS parameters

- factor base $=$
$\left\{\right.$ prime ideals $\left.\mathfrak{p}_{i},\left|\operatorname{Norm}\left(\mathfrak{p}_{i}\right)\right| \leq B\right\}$
$\cup\left\{\right.$ prime ideals $\left.\mathfrak{r}_{j},\left|\operatorname{Norm}\left(\mathfrak{r}_{i}\right)\right| \leq B\right\}$
- we need as many relations as prime ideals $\mathfrak{p}_{i}, \mathfrak{r}_{j}$ to get a square matrix
- balance the relation collection time with the linear algebra time

Algebraic Norms

The asymptotic complexity is determined by the size of norms of the elements $\sum_{0 \leq i<t} a_{i} \alpha^{i}$ in the relation collection step.
We want both sides smooth to get a relation.
"An ideal is B-smooth" approximated by "its norm is B-smooth".

Smoothness bound: $B=L_{p^{n}}[1 / 3, \beta]$
Size of norms: $L_{p^{n}}\left[2 / 3, c_{N}\right]$
Complexity: minimize c_{N} in the formulas.
To reduce NFS complexity, reduce size of norms asymptotically. \rightarrow very hard task.

Extended TNFS [Kim Barbulescu 16]

- Tower NFS (TNFS): Barbulescu Gaudry Kleinjung
- Extended TNFS: Kim-Barbulescu, Kim-Jeong, Sarkar-Singh
- Tower of number fields
- $\operatorname{deg}(h)$ will play the role of t, where $a_{0}+a_{1} \alpha+\ldots+a_{t-1} \alpha^{t-1}$
- $a_{0}-a_{1} \alpha$ becomes $\left(a_{00}+a_{01} \tau\right)-\left(a_{10}+a_{11} \tau\right) \alpha$

Complexities

large characteristic $p=L_{Q}[\alpha], \alpha>2 / 3$:
$(64 / 9)^{1 / 3} \simeq 1.923 \quad$ NFS
special p :
$(32 / 9)^{1 / 3} \simeq 1.526$ SNFS (e.g. Thomé's talk)
medium characteristic $p=L_{Q}[\alpha], 1 / 3<\alpha<2 / 3$:
$(96 / 9)^{1 / 3} \simeq 1.201 \quad$ prime n NFS-HD (Conjugation)
$(48 / 9)^{1 / 3} \simeq 1.747$ composite n,
best case of TNFS: when parameters fit perfectly
special p :
$(64 / 9)^{1 / 3} \simeq 1.923$ NFS-HD+Joux-Pierrot'13
$(32 / 9)^{1 / 3} \simeq 1.526$ composite n, best case of STNFS

Largest record computations in $\operatorname{GF}\left(p^{n}\right)$ with NFS ${ }^{1}$

Finite field	Size of p^{n}	Cost: CPU days	Authors	sieving dim
$\mathrm{GF}\left(p^{12}\right)$	203	11	$[$ HAKT13]	7
$\mathrm{GF}\left(p^{6}\right)$	422	9,520	$[\mathrm{GGMT17]}$	3
$\mathrm{GF}\left(p^{5}\right)$	324	386	$[\mathrm{GGM} 17]$	3
$\mathrm{GF}\left(p^{4}\right)$	392	510	$[\mathrm{BGGM} 15 \mathrm{~b}]$	2
$\mathrm{GF}\left(p^{3}\right)$	593	8,400	$[\mathrm{GGM} 16]$	2
$\mathrm{GF}\left(p^{2}\right)$	595	175	$[\mathrm{BGGM} 15 \mathrm{a}]$	2
$\mathrm{GF}(p)$	768	$1,935,825$	$[\mathrm{KDLPS} 17]$	2

None used TNFS, only NFS and NFS-HD were implemented.

Limitations of asymptotic complexity

use: $\operatorname{Norm}_{K_{f}}(a(\alpha))=\operatorname{Res}(a(x), f(x))($ for monic $f)$

$$
|\operatorname{Res}(a, f)| \leq\left(d_{a}+1\right)^{d_{f} / 2}\left(d_{f}+1\right)^{d_{a} / 2}\|a\|_{\infty}^{d_{f}}\|f\|_{\infty}^{d_{a}}
$$

- based on bounds on coefficient size of polynomials, bounds on algebraic norms
- Kalkbrener, Bistritz-Lifshitz bounds are not satisfying enough
- no record computation available to re-scale the asymptotic formulas
Finding a better estimation and designing an implementation at the same time

Menezes-Sarkar-Singh Estimations

curve	$\log _{2} p^{n}$	$\log _{2} p$	variant	$\operatorname{deg} h$	cost
BN	3072	256	TNFS with constants	4	2^{136}
BN	3732	311	TNFS without constants	4	2^{128}
BN	3072	256	STNFS with constants	6	2^{150}
BN	4596	383	STNFS without constants	6	2^{128}
BLS	4608	384	TNFS with constants	4	2^{156}
BLS	4608	384	TNFS without constants	4	2^{140}
BLS	4608	384	STNFS with constants	6	2^{189}
BLS	4608	384	STNFS without constants	6	2^{132}

Simulation

- compute record-looking polynomials
- simulate relation collection \rightarrow extrapolate the number of relations
- estimate linear algebra
- neglect individual log

Questions:

- how to simulate well without being too slow?
- how to model the filtering step (packing the matrix)?
- by how much balancing relation collection and linear algebra?

Barbulescu-Duquesne simulation

Estimation of cost:

$$
\frac{2 B}{\mathcal{A} \log B} \rho\left(\frac{\log _{2} N_{f}}{\log _{2} B}\right)^{-1} \rho\left(\frac{\log _{2} N_{g}}{\log _{2} B}\right)^{-1}+2^{7} \frac{B^{2}}{\mathcal{A}(\log B)^{2}\left(\log _{2} B\right)^{2}}
$$

where $\mathcal{A} \leq n / \operatorname{gcd}(\operatorname{deg} h, n / \operatorname{deg} h)$,
ρ is the Dickman- ρ function

- takes into account Galois automorphisms
- takes into account filtering (reduced matrix)
- assume the coefficients of h, f are minimal
- assume $\alpha(f), \alpha(g)=0$
- balance cost of sieving \approx cost of linear algebra

Barbulescu-Duquesne estimates

curve	$\log _{2} p^{n}$	$\log _{2} p$	$\operatorname{deg} h$	cost
BN	3072	256	6	$2^{99,69}$
BN	5534	462	6	2^{128}
BLS	5530	461	6	2^{128}

Simulation without sieving

space: $\mathcal{S}=\left\{\sum_{0 \leq i<d_{h}} a_{i} y^{i}+\left(\sum_{0 \leq i<d_{h}} b_{i} y^{i}\right) x,\left|a_{i}\right|,\left|b_{i}\right|<A\right\}$ volume: $\mathrm{Vol}=2^{2 d_{h}-1} A^{2 d_{h}}$
algebraic norm:
$N=\operatorname{Norm}_{K_{f}}\left(a\left(\alpha_{h}, \alpha_{f}\right)\right)=\operatorname{Res}_{y}\left(\operatorname{Res}_{x}(a(x, y), f(x)), h(y)\right)$ (monic h, f)
N is B-smooth ($N=\prod_{p_{i}<B} p_{i}^{e_{i}}$) with probability

$$
u=\frac{\log N+\alpha}{\log B}, \operatorname{Pr}=\rho(u)+(1-\gamma) \frac{\rho(u-1)}{\log N}
$$

where $\gamma \approx 0.577$ is Euler γ constant, ρ is Dickman- ρ function

Simulation without sieving

Implementation of Barbulescu-Duquesne technique Variants:

- compute $\alpha(f), \alpha(g)$ (w.r.t. subfield)
- select h, f, g with good low $\alpha(f)<-3, \alpha(g)<-4$
- Monte-Carlo simulation with 10^{6} to 10^{9} points in \mathcal{S} taken at random. For each point:

1. compute its algebraic norm N_{f}, N_{g} in each number field
2. smoothness probability with Dickman- ρ

- Average smoothness probability over the subset of points \rightarrow estimation of the total number of possible relations in \mathcal{S}
- dichotomy to approach the best balanced parameters: smoothness bound B, coefficient bound A.

MNT curves, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{6}}$

 $\log _{2} \operatorname{Vol}(S)$

Observations

$(a)=\left(\sum_{i=0}^{d_{h}-1} a_{i} \tau\right),(b)=\left(\sum_{i=0}^{d_{h}-1} b_{i} \tau\right)$ randomly chosen are coprime with probability $1 / \zeta_{K_{h}}(2)$
Much different than for integers: $1 / \zeta(2)=6 / \pi^{2} \approx 0.6$

$$
\begin{aligned}
& \quad \zeta_{K_{h}}(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}\left(\# \text { ideals of norm } n \text { in } K_{h}\right) \\
& h=x^{2}+1: 1 / \zeta_{K_{h}}(2) \approx 0.6 \\
& h=x^{2}-x+4: 1 / \zeta_{K_{h}}(2) \approx 0.469 \\
& h=x^{2}+x-1: 1 / \zeta_{K_{h}}(2) \approx 0.861
\end{aligned}
$$

Experimentally: a good α comes with a low coprime probability

Future work

- How to rank polynomials according to their smoothness properties? α function (S. Singh) faster, generalized Murphy's E function
- How to build the factor basis?
- How to deal with generalized bad ideals?
- How to sieve very efficiently in even dimension 4 to 24 ?

Thank you for your attention.

