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Motivation (Class polynomials)

Elliptic curves.
Let E be an elliptic curve over number field M.
e The endomorphism ring Endy;(E) is either
e Z or
o an order O c K = Q(v/d) where d € Z.
In the second case we say that E has complex multiplication
(CM) by O.
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Motivation (Class polynomials)

Elliptic curves.
Let E be an elliptic curve over number field M.
e The endomorphism ring Endy;(E) is either
e Z or
o an order O c K = Q(v/d) where d € Z.
In the second case we say that E has complex multiplication
(CM) by O.
e CM = everywhere potential good reduction < jp € Z.
@ Then the class polynomial
Ho(z)= J] (¢-im)
End(E)zO

has integer coefficients.
o Two main applications:
e comnstructing class fields
e constructing elliptic curves of prescribed order
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Genus 2

@ All genus 2 curves are hyperelliptic hence given by an equation
C: y2 =2° +azt + b2’ + 2’ + dz +e.

@ The analogue of j-invariant is the Igusa invariants, given by an invariant
triplet (j1, j2, Js)-

@ The denominators of Igusa invariants correspond to the curve having bad
reduction.
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Genus 2

@ All genus 2 curves are hyperelliptic hence given by an equation
C: y2 =2° +azt + b2’ + 2’ + dz +e.
@ The analogue of j-invariant is the Igusa invariants, given by an invariant
triplet (j1, j2, j3)-

@ The denominators of Igusa invariants correspond to the curve having bad
reduction.

CM.

@ A curve C/k of genus g has CM if there is an embedding
O = Endz(Jac(C)), where O is an order in a CM field of degree 2g over Q.

@ Let O be an order in a quartic CM field. Then the class polynomials

Hj(x) = [T (z-7j:) forie{1,2,3}.
C has CM by O

have rational coefficients.

@ Goren-Lauter (2007) gave a bound on the primes dividing the denominators.

@ Lauter-Viray (2012) bounded the exponents of the primes dividing the

denominators.
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Goren-Lauter [GLO7]

Theorem [GLO7].

Let C be a genus 2 curve over a number field M. Suppose that the
Jacobian J of C is simple and has CM by Ok, where

K =Q(Vd)(\/iz) where p totally negative in Z[/d], and d € Zo.
Let p|p be a prime of stable bad reduction for C, and let us assume
that it is a good reduction for J. Then we have p < 16d? TrK/Q(,u)Q.

Corollary. With the notation above, if ord,(j;(C)) <0, then
p < 16d? TrK/@(,u)z.
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Proof of Theorem [GLO7]

Let J=J (mod p). Then we have J 2 Ey x E5 as p.p.a.v. where E; and E» are
isogenous and supersingular hence

1: 0k = End(J) = End(J) Q2 End(E1 x E2) ® Q 2 M2(Bp,c0 ).

Lemma [GLO7]. In the quaternion algebra Bj, , if for any x,y € Bp ., we have
N(z)N(y) < p/4 then zy = yz.

@ Commutativity of v/d and VIt and the fact that Rosati involution induces
complex conjugation on O (gives ¢(77) = ¢(n)") gives that the entries t(\/d)
and +(y/f) have norm less than \/p/2 if p > 16d° Trg (1)

= (K)c M2(K1), where K is an imaginary quadratic field. This implies that
K c K. Contradicts the assumption on K. Hence p < 16d” Try q(u)>.
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Genus 3

More complicated:

1. Not all genus-3 curves are hyperelliptic anymore. A genus-3
curve is either

- a smooth plane quartic (Dixmier-Ohno invariants)
- a hyperelliptic (Shioda invariants).

2. If a genus-3 curve C' over a number field M has a stable bad
reduction modulo prime ideal p c O then

J2FEixA or Jx~F;xEyxE;

as p.p.a.v., where F1, Ey, F3 are elliptic curves and A is the
Jacobian of a genus-2 curve.

3. Not all CM types in sextic CM fields are primitive.
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K.-Lauter-Lorenzo-Newton-Ozman-Streng 2016

Theorem [KLLNOS16].

Let C be a curve of genus 3 defined over a number field M. Suppose
that the Jacobian J is simple and has CM by an order O inside a
sextic CM field K = Q(p) with pe O.

Let p|p be a prime of stable bad reduction for C, and let us assume
that it is a good reduction for J. Then we have

1 10
<=-B",
L

where B = —%TrK/Q(/ﬂ).
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A hyperelliptic curve of genus 3 is smooth projective curve given
by an equation of the form

C:y?=f(zx) with deg(f) =7, or8.

o Shioda gives a set of absolute invariants j = u/A!, where A is the
discriminant of f(x).

A Picard curve of genus 3 is a smooth projective curve given by
an equation of the form

C:y?=a*+az?+bz+e,

where a, b, c € k.

o There is a set of absolute invariants j = u/A!, where A is the
discriminant of z* + az? + bz + c.
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Corollary.

Let C/M be a hyperelliptic or Picard curve of genus 3 over a number
field M whose Jacobian is simple. Suppose that C' has CM by an
order O inside a sextic CM field K = Q(u) with p € O.

Let | € Zsg and let j = u/A! be a quotient of invariants of hyperelliptic
(respectively Picard) curves, such that the numerator u has degree
561 (respectively 121).

Let p be a prime over a prime number p such that ord,(j(C)) <0.
Then p < %Blo, where B = —% TrK/Q(/ﬂ).
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Proof of Theorem [KLLNOS16]

Suppose that C has bad reduction modulo prime ideal p c Oy such
that the Jacobian J has good reduction modulo p.

Bouw-Cooley-Lauter-Lorenzo-Manes-Newton-Ozman proved:
J2ExA,

as principally polarized abelian varieties, where E is an elliptic curve
and A is a principally polarized abelian surface such that there is an
isogeny s: K x B — A.

Once we fix an isogeny s: F x EE — A, there are natural embeddings

12 O < End(J)>End(J) = End(E x A)>End(E*) ® Q = M3(B),

where End(E) =R and B=R ® Q.
As in g = 2 case, we will show that when p is too large this embedding
does not exist, then p|p cannot be a prime of bad reduction.
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Decomposition

Let o : O > End(FE x A) be the injective ring homomorphism coming from
reduction of J at p and write

to(p) = ;

where we have z € R, y e Hom(A, E), z € Hom(E, A) and w € End(A).
@ We would like to have O — Ms3(B).
@ We need a further isogeny E* — E x A.
@ To get the bound, we need the ‘right’ isogeny.

Let

100

F= CEP S ExA
0]z |wz

(P,Q, R) — (P, 2(P) +wz(Q)).
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So we obtain a further embedding

11 :End(E x A) — End(E?) ® Q = M3(B)
f— FlfF
Let t=11019: O < Ms(B). Let n € Zsg be such that the kernel of the

isogeny F: E3 - E x A is killed by n.
We get

Ty

= 1 =
t(p) ow

O~ 8
— O Q
QL O o

where x,a,b,nc,nd € R.
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e We now want to show that if p > %Blo, then (K) c M3(K1),
where K is a quadratic field over Q.

o If F is ordinary then this holds. Suppose that E is supersingular.

Explicit computations using the polarization gives

n+bd .
a )

o N(z) < B; N(a) < B?/4; N(b) < B3/3; N(d) < B"/S8.

@ C=

Hence the product of any pair of distinct elements of {x,a,b,nc,nd}
has norm less than p/4. By Lemma [GL07], they all commute.
= (K)c M;3(K;) = K;cK.

e This finishes the proof of Theorem [KLLNOS16] in the case
where K does not contain an imaginary quadratic subfield.
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K contains an imaginary quadratic field:

Suppose that K contains K1 = Q(v/—-96) and p + n (recall that n is the annihilator
of ker(F) where F': B3 - E x A). If the CM type of K is primitive then ¢(r/=3)
has distinct eigenvalues. In other words, there is an invertible matrix

P e M3(Q(\/=6)) such that

V=50 0
P(V-)P =+l 0 V=5 0 |.
0 0 V=i

Suppose that p > %Blo. Then ¢(u) has coefficients in Q(v/—9). Moreover, since i
commutes with \/-4§, we have

@ The bottom right entry of Pu(u)P ™" is a root of the minimal (degree 6
irreducible) polynomial of y over Q. This gives a contradiction because the
entries of the matrix Pu(u)P ! lie in the quadratic field Q(v/-6).

This completes the proof of Theorem [KLLNOS16].
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CM Picard curves

Let k be a field of characteristic not 2 or 3. Recall that a Picard curve
of genus 3 is a smooth plane projective curve given by an equation of
the form

C:vy=a+az® +bx+c.

o This model for the Picard curves is unique up to the scaling
(z,y) = (A2, \y). (Holzapfel.)

o If k£ contains a primitive 3rd root of unity (3, then Aut(C)
contains p: (z,y) = (z,C3y).

o Let C be a Picard curve with CM by an order O in a sextic CM
field K. Then (3 € O. (The converse also holds, Koike-Weng.)
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Invariants

Discriminant-normalized invariants:

a’ vt A
ATATA
Koike-Weng invariants:
b e
a3’ a2
Our invariants:
a’ ac
yal b_Q’ J2 b_2'
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K.-Lorenzo-Streng 2017

Theorem [KLS17].

Let C be a Picard curve of genus 3 over a number field M with simple
Jacobian which has CM by an order O of a number field K of

degree 6. Let K, be the real cubic subfield of K and O, = K, nO.
Let u be a totally real element in O, such that K =Q(u)((3).

Let j = u/b* be a normalized Picard curve invariant. Let p be a prime
of M lying over a rational prime p.

If ord, (5(C)) <0, then p < TrK+/Q(,u2)3.

We prove a stronger result:

@ We give an algorithm that computes a small set of primes
dividing the denominators of j(C).
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Reduction of Picard curves

o If a prime p divides the denominator of the invariant j; or jo, we
do not necessarily have bad reduction.

Let C:y® = 2% + az® + bx + ¢ over local field.
Extending the base field, can scale such that a, b, ¢ are all integral
anda=1,b=1,0r c=1.
If e.g., ordy(j1) < 0, then we are in these cases
Q@ C:y3=2z*+ax?+br+1 with b=0 modulo p, or

Q C:y3=z*+2%+bx+cwith b=c=0 modulo p.

e This talk: restrict to case 1 with a # +2.

This is the case of smooth reduction.
The other cases have very explicit bad reduction and are very similar
with minor technical changes.
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o If p is a prime of good reduction and divides the denominator of
one of the invariants, then we have C: y3 = z* + @z% + 1 which is a
2-cover of an elliptic curve. The cover is explicitly given by

$:C > E
(z,y) = (y,2%).

o We obtain an isogeny Fy: E x A - J with kernel killed by [2],
where E is an elliptic curve and A is a principally polarized
abelian surface.

@ So we have 1p: O > End(ExA)®Q

o Fo_laFo
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As in the previous case by fixing the isogeny F : E®> - E x A, we obtain an
embedding

1:0 < End(J) - End(J) ® Q > End(E*) ® Q = M3(B).
Let n € Zso such that [n]ker(F') = 0. Then

r a b v-3 0 0
()= 1 0 ¢ |, and «(vV-3) = 0o s t |,
0 1 d 0 u v
where z,a, b, nc, nd, ns,nt,nu,nv € R := End(FE).
@ By the commutativity of p and /-3, we get
V-3 0 0
W=3)=l o Vv=3 o |.
0 0 V-3

— Recall that this implies pjn.

It now suffices to bound n.
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Calculations

Explicit computations using the polarization, the minimal polynomial
of 1 give:

@ x€Z,acls,

to = TI‘K+/Q(M2) > 2%+ 2a,
n=n(u,z,a)<ts.

This bound depends on the choice of the isogeny F.

Algorithm:

1 Take one real n € On K, such that K = K,(n) and list all (a,x)
satisfying t > 2 + 2a.

2 Let N, be the least common multiple of the numbers n(7n,a, x).

3 List primes p dividing N,.
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Comparisons of invariants

Discriminant-normalized invariants:

[KLLNOSI16]:
1 Tr 2110
p< 3 K+/Q(M )
Koike-Weng Invariants:
No bounds.

Our invariants:
Main Theorem: p < Trg, o(p?)?

+ we give an algorithm to compute all the solutions.
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The Picard curve (computed by Koike-Weng and Lario-Somoza)
P =2t -73.7-2-312% +211-47- 312 - 7-312- 11593

has CM by O, where K = K,((3) and K, = Q[z]/(2® + 2? - 10z - 8).
Its invariants are given by
o Discriminant-normalized:
L (3173 273147780 7731773011503
To(323) 0 T 236 P T (210.238)2

o 1B0~1.2.-10"

. Lo =289472 . 11593
o Koike-Weng: ji = 7537753, Ja = s5.7732
-73.31.73% . _ 72.31.73-11593

o Our invariants: j1 = =55 03—, Jo = G2
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