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Outline
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Quotient operations
The qDSA scheme

(1)
(2)
(3) Instantiating with the x-line
(4)

Instantiating with Kummer surfaces
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Operations on quotient groups

Operations G — G
(G1) P~ AP
(G2) (P,Q)—P+Q
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Operations on quotient groups
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Operations on quotient groups

{P,—P}b-------m-- > {[\|P, —[\]P}
T G——mG T
Operations G — G _E_ G/+1 G/+1 j,
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(G2) (P,Q)—P+Q
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Operations on quotient groups

Operations G — G G/+1
(G1) P[NP (x(P),x(Q))
(G2) (P,Q)—P+Q

G/+1

Operations G/ +1— G/ £1
(Q1) x(P) = x([AIP)
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Operations on quotient groups
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Operations G — G _E_ G/+1 G/+1 j,
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(G2) (P,Q)—P+Q

Operations G/ +1— G/ £1
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Operations G — G _E_ G/+1 G/+1 j,
(G1) P[NP (x(P),x(Q)) {x(P+ Q)}
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Operations G/ +1— G/ £1
(Q1) x(P) = x([AIP)
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Operations on quotient groups

Operations G — G G/+1
(G1) P—[A]P
(G2) (P,Q)—P+Q

G/+1

Operations G/ +1— G/ £1
(Q1) x(P) = x([AIP)
(Q2) (x(P),x(Q)) = {x(P + Q),x(P - @)}
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Schnorr signatures

Starting point: Schnorr signatures [Sch89]
(1) Schnorr identification scheme (group-based)
(2) Apply Fiat-Shamir to make it non-interactive

(3) Include message to create a signature scheme
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Schnorr identification on the quotient (qID)

Prover(P, Q, @)

Comm.

Verifier(P, Q)
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Schnorr identification on the quotient (qID)

Prover(x(P),x(Q), ) Comm. Verifier(x(P),x(Q))
r <g Ly
R« [r]P R
c C<RZLN
s+ (r—c-a)mod N s

R < [s]P +[c]Q
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Schnorr identification on the quotient (qID)

Prover(x(P),x(Q),a) | Comm. Verifier(x(P),x(Q))
r <R Z}k\l
x(R) = x([r]P) x(R)

s+ (r—c-a)mod N

C<—RZN

R < [s]P + [c]Q
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Schnorr identification on the quotient (qID)

Prover(x(P),x(Q),a) | Comm. Verifier(x(P),x(Q))
r <R Z}k\l
x(R) < x([r]P) x(R)

s+ (r—c-a)mod N

C<—RZN
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Schnorr identification on the quotient (qID)

Prover(x(P),x(Q),a) | Comm. Verifier(x(P),x(Q))
r <—R Z}k\l
x(R) < x([r]P) x(R)
c C<RZLN

s+ (r—c-a)mod N

x(R) € {x([s]P + []Q)}

Need {x([s]P + [¢] @), x([s]P — [c]Q)}.. possible on G / £1!
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Schnorr identification on the quotient (qID)
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c C 4R ZE
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qSIG and qDSA

qiD Fiati;amir aSIG
(Schn. ID) (Schn. sig.)
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qSIG and gDSA

(1) Include the public key in the challenge
(2) Generate ephemeral secret r pseudo-randomly
qiD Fiat-Shamir aSIG qDSA

(Schn. ID) ~ (Schn.sig.) (EdDSA)
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qSIG and qDSA

(1) Include the public key in the challenge

(2) Generate ephemeral secret r pseudo-randomly

g F ’atiam’r qSIG . qDSA
(Schn. D) (Schn. sig.) (EdDSA)

Add countermeasures against side-channel attacks
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qSIG and gDSA

(1) Include the public key in the challenge

(2) Generate ephemeral secret r pseudo-randomly

g F ’atiam’r qSIG . qDSA
(Schn. ID) (Schn. sig.) (EADSA)

Add countermeasures against side-channel attacks
(3) Fault attacks on ephemeral scalar multiplication
» Add randomness into hash for nonce generation
(4) Fault attacks on base point (Mehdi's talk on Monday)
» Clamp, or add a small cofactor into the computation

» Verify correctness of base point
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Additional remarks

(1) Security reduction. Similar to original Schnorr ID scheme
(2) Unified keys. Identical key pairs for DH and qDSA

(3) Key and signatures sizes. 32-byte keys, 64-byte signatures
(requires work in genus 2!)

(4) Verification. Two-dimensional scalar multiplication
algorithms not available & no batching
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Back to curves

Here, G the Jacobian group of a hyperelliptic curve of genus g
» Elliptic curves for g = 1, have J / +1 = P!
» Hyperelliptic curves with g =2, have 7 / £1 =K

» For g > 3 does not scale well (index calculus)
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Back to curves

Here, G the Jacobian group of a hyperelliptic curve of genus g
» Elliptic curves for g = 1, have J / +1 = P!
» Hyperelliptic curves with g =2, have 7 / £1 =K
» For g > 3 does not scale well (index calculus)
Need to define
(1) x(P) — x([A\]P) (usual way via Montgomery ladder)
(2) {x(P),x(Q)} = {x(P+ Q),x(P - Q)}
(3) For any x(P), a 32-byte representation of x(P)
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On the choice of model (g = 1)

For elliptic curves common choice of Montgomery model
E/F,: By? = x> + Ax® + x
We obtain Curve25519 by defining

p=2°°_19, A=1486662, B=1

15 November 2017
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Arithmetic on P!

X(P):(Xl ZZl), X(P+Q):(X3 ZZ3),
X(Q) = (X2 . Zz), X(P — Q) = (X4 . Z4),
then

XsXa =\ (X1 Xo — 21 2)?

xADD :
2325 =\ (X1 2o — X2 Z1)?
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Arithmetic on P!

If
x(P)=(X1:2Z1), x(P+ Q)= (X3:23),
x(Q) = (X2: Z2), x(P— Q)= (X : Z4),
then
. 2
XDBL: 23 =M (x* - 22)%,

Z3 = p-4XZ (X? + AXZ + Z?)
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Biquadratic forms on PP

In fact, have

X3Xs = Boo, Boo=v-(XiXo — Z12)* ,
237y =By, Bu=v-(XiZo—X2Z)?,
X3Zs + XaZs = Big, Bio=v-[(X1Z2 — X2Z1) (X122 + X2 Z1)
+ 2AX1 X221 25]
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Biquadratic forms on P!

In fact, have

XsXq = Bog, Boo=v-(XiXo — Z12)*,
7374 =B, Biu=v-(X1Zo—X21)?,

X3Zs + XaZs = Big, Bio=v-[(X1Z2 — X2Z1) (X122 + X2 Z1)

+ 2AX1 X221 25]

( X3Xq * >_V'<Boo *)
XsZy + XaZs Z3Z4 Bio Bii) -

Thus (X3 : Z3) and (X4 : Z4) are the unique solutions to

ie.

B11X? — 2 B1oXZ + ByZ? =0

15 November 2017

12 /24



Summarizing verification on P!

Given a signature (x(R) || s) on M w.r.t. x(Q)
(1) ¢« H(x(R) [| M)

(2) x(To) <= x([s]P)

(3) x(T1) < x([c]Q)

(4) Compute all Byg, Bio, B11 for x(Tp) and x(T1)
()

C
5) Check that x(R) vanishes on
Bii-X? =2 Big- XZ + By - Z°

(ie. x(R) € {x(To + T1),x(To — T1)})
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On the choice of model (g = 2)

Gaudry-Schost curve [GS12]

E/Forzr_q iy = x°
+ 64408548613810695909971240431892164827 - x*
+ 76637216448498510246042731975843417626 - x>
+ 54735094972565041023366918099598639851 - x°
+ 985573244359099051333491896684 7277222 - x
+ 81689052950067229064357938692912969725

and its “squared” Kummer surface [CC86]

20020 2 42
K 4E? . xyzt — < x“+y*+z°+t°— F(xt+ yz) >

—G(xz + yt) — H(xy + zt)
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Arithmetic on K

then [Gau07; Ber+14]

xADD :

,

=(xx:y1:2
=(x:y:z:
X3X4 = UV
y3ys = vV
Z32Z4 = UV
t3ty v
x' = &
yo o= &
z = &3
t/ = ?5\4

t1), xX(P+Q)=(x3:y3:23:13),
t2), X(P-=Q)=(xa:ys:2:tg),
'81‘(X/+y/+2/+t,)2,
'62'(X/+_yl_zl—t/)27

ez (X —y + 7 —t)?,

ceq- (X' —y —Z +t')*, where
atynta+t) (etypt+tatth
tyn-—z—t)-(ety—2—-1t
x—ntza-t) - (e—ypt+tzn-t
‘(Xl y1—21+t1) (Xg—y2—22+t2

15 November 2017
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Quadratic identities on K

These formulas give rise to an identity [Cos11]

2X3X4 * * * Boy * *
* 2y3y4 * * _ *  Bypo o« *
* * 272324 * R * By  x
* * * 2t3ty * * * Bss
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Quadratic identities on K

These formulas give rise to an identity [Cos11]

2x3X4 s * * Boo

o(x,y) 2y3ya * * | _,.| B

o(x,z) o(y,z) 2zz * Bxo

o(x,t) o(y,t) o(z,t) 2t3ts Bso
where o(a, b) = azbs + asbs.

* * *
Bll * *
B By %
B31 B3 Bss
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Quadratic identities on K

These formulas give rise to an identity [Cos11]

2x3X4 * * * By * * *
o(x,y)  2y3ya * * _ . Bio Bi1  x *
o(x,z) oly,z) 2z3z4  * By Bo1 By %
o(x,t) o(y.t) o(z,t) 2tsts B3y Bs1 Bz Bss
where o(a, b) = azbs + asbz. Thus
(x3:y3:23:13), (xa:ya:2za:ty)
are the unique solutions to
Bii-x*—2-Big-xy+ By -y> =0,
Boy-x?>—2-Byy-xz+4 Bgy-2> =0,
B33 -x?>—2-Bsg-xt+ By -t =0,
By -y?—2 By yz+Biy-2> =0,
Bss-y*—2-Bsi-yt+ Bt =0,
Bsz-z2—2-Bsp -zt +Bop - t> =0
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Summarizing verification on K

Given a signature (x(R) || s) on M w.r.t. x(Q)
(1) ¢« H(x(R) [| M)

(2) x(To) < x([s]P)

(3) x(T1) < x([c]Q)

(4)

(5)

ompute all By for x(Tp) and x(T1)

O 0O

heck 6 quadratic polynomial equations in x(R)
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Efficiency of the By,

Computing the By on K does not look great.
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Efficiency of the By,

Computing the By on K does not look great. We have
[CC86] [Gau07]
K i) ]Clnt i> I/C\Gau

» The forms B,Gf“ on K% are nice, but need extra constants

> Pulling back all the way via H o CAdestroys nice symmetry
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Efficiency of the By,

Computing the By on K does not look great. We have

[CC86] [Gau07]

K H ]Clnt C I/C\Gau

» The forms B,Gf“ on K% are nice, but need extra constants

> Pulling back all the way via H o CAdestroys nice symmetry

Solution: Pull back §,§a“ via C, evaluate at H(x(P))

15 November 2017 18 / 24



Cost of computing biquadratic forms

g Func. M S Cc

Check 8 3 1
Ladder | 1280 1024 256

Check 76 8 88
Ladder | 1799 3072 3072

Table: Cost of By

15 November 2017 19 / 24



Point compression

» Signatures (x(R) || s)

» Have K ¢ P3, so

xX(Ry=(x:y:z:t)=( 0 1) (if t #0)

~ | X
~ <
~ | N

At first sight need 48 bytes to represent x(R)

» Compressing further seems to require solving a quartic
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Point compression

v

Signatures (x(R) || s)

Have K C P3, so

v

xX(Ry=(x:y:z:t)=( 0 1) (if t #0)

~ | X
~ <
~ | N

At first sight need 48 bytes to represent x(R)

v

Compressing further seems to require solving a quartic

But have a projection 7 : KL — P? as a double cover

v
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Point compression

Take the four nodes Ny, ..., N3 and an isomorphism
No—(0:0:0:1), Ni+—(0:0:1:0),
No+— (0:1:0:0), N3+—(1:0:0:0).
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Point compression

Take the four nodes Ny, ..., N3 and an isomorphism
No—(0:0:0:1), Ni+—(0:0:1:0),
No+— (0:1:0:0), N3+—(1:0:0:0).
Then

r2(xy + zt)? + r3(xz + yt)? + rZ(xt + yz)?
. B —2n51((x% + y?)zt + xy (22 + t2))
RoaCoyzt = ol o2 + 2yt + xz(y? + 2))
— 2r353((x2 + tz)yz + xt“(y2 + 22)
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Point compression

Take the four nodes Ny, ..., N3 and an isomorphism
No—(0:0:0:1), Ni+—(0:0:1:0),
No+— (0:1:0:0), N3+—(1:0:0:0).
Then

r2(xy + zt)? + r3(xz + yt)? + rZ(xt + yz)?
. B —2n51((x% + y?)zt + xy (22 + t2))
RaC-xzt=  hpe((@ + )yt + xz(y? + 2))
—2n353((x? + t2)yz + xt(y? + 2?)
Quadratic in all its variables! Projection away from N is

mi(x:y:z:t)—=(x:y:2z)

which we can represent in 32 bytes.
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Point compression

Take the four nodes Ny, ..., N3 and an isomorphism
No—(0:0:0:1), Ni+—(0:0:1:0),
No+— (0:1:0:0), N3+—(1:0:0:0).
Then

r2(xy + zt)? + r3(xz + yt)? + rZ(xt + yz)?
—2n51((x% + y?)zt + xy (22 + t2))
—2ns((x? + 22yt + xz(y? + t?))
—2n353((x? + t2)yz + xt(y? + 2?)

K:4C - xyzt =

Quadratic in all its variables! Projection away from N is
mi(x:y:z:t)—=(x:y:2z)
which we can represent in 32 bytes.

Recovery is solving a quadratic, je. computing a square root
15 November 2017
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Implementing the scheme

g. Ref. Object. Function. CC. Stack.

This Curve25519 sign 14M  512B
1 [NLD15]  Ed25519 sign 19M 1473B
[Liu+17] FourQ sign 5M 1572B

Table: AVR ATmega comparison (rounded)
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Implementing the scheme

g. Ref. Object. Function. CC. Stack.

This Curve25519  verify 256M  644B
1 [NLD15]  Ed25519 verify 31M 1226B
[Liu+17] FourQ verify 11M 4957B

Table: AVR ATmega comparison (rounded)
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Implementing the scheme

g. Ref. Object. Function. CC. Stack.
This GS sign 10M  417B
[Ren+16] GS sign 10M 926B

Table: AVR ATmega comparison (rounded)
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Implementing the scheme

g. Ref. Object. Function. CC. Stack.

This GS verify 20M  609B
[Ren+16] GS verify 16M  992B

Table: AVR ATmega comparison (rounded)

15 November 2017
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Thanks!

Questions?
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