
Attacks on Schnorr signatures with biased nonces

Mehdi Tibouchi

NTT Secure Platform Laboratories

ECC Workshop, 2017–11–13

1/38 ©2017 NTT Secure Platform Laboratories

Outline

Schnorr signatures with biased nonces
Schnorr signatures
Nonce biases

The lattice approach
Description of the attack
Limitations and extensions

The statistical approach
Attack overview
Using Schroeppel–Shamir

2/38 ©2017 NTT Secure Platform Laboratories

Outline

Schnorr signatures with biased nonces
Schnorr signatures
Nonce biases

The lattice approach
Description of the attack
Limitations and extensions

The statistical approach
Attack overview
Using Schroeppel–Shamir

3/38 ©2017 NTT Secure Platform Laboratories

Schnorr signatures

▸ Public parameters: cyclic group G of prime order q, generator
g , hash function H ∶ {0,1}∗ ×G→ Z/qZ

▸ Key pair: secret x
$← Z/qZ, public h = g x

Sign(x ,m)

1. k
$← Z/qZ

2. r ← gk

3. h ← H(m, r)
4. s ← k − hx mod q

5. return (h, s)

4/38 ©2017 NTT Secure Platform Laboratories

EC-Schnorr signatures

▸ Public parameters: elliptic curve E/Fp, point P ∈ E(Fp) of
prime order q, hash function H ∶ {0,1}∗ × Fp → Z/qZ

▸ Key pair: secret x
$← Z/qZ, public Q = [x]P

Sign(x ,m)

1. k
$← Z/qZ

2. (u, v) ← [k]P
3. h ← H(m,u)
4. s ← k − hx mod q

5. return (h, s)

5/38 ©2017 NTT Secure Platform Laboratories

Security and variants

▸ Secure (EUF-CMA) if the discrete logarithm is hard in G in
the ROM for H

▸ Common variants:
▸ Hash the public key as well
▸ Deterministic k , e.g. k =MACS(m) for an auxiliary key S
▸ Give out gk (resp. k[P]) instead of h in the signature

▸ EdDSA ≈ EC-Schnorr on X25519; qDSA ≈ Schnorr on
Kummer lines/Kummer surfaces

▸ DSA, ECDSA: badly designed variants of Schnorr (for patent
reasons)

▸ Results in this talk apply to all of the above
▸ Caveat: specific ways of inducing nonce biases may only apply

to a subset of them

6/38 ©2017 NTT Secure Platform Laboratories

Outline

Schnorr signatures with biased nonces
Schnorr signatures
Nonce biases

The lattice approach
Description of the attack
Limitations and extensions

The statistical approach
Attack overview
Using Schroeppel–Shamir

7/38 ©2017 NTT Secure Platform Laboratories

Sensitivity of the nonce

▸ The random value k in signature generation usually called the
nonce

▸ Should never be repeated! If (h, s), (h′, s ′) signatures on m,
m′ with the same value k , we have:

s ≡ k − hx (mod q) s ′ ≡ k − h′x (mod q)

Subtract the two:

(h′ − h) ⋅ x ≡ s − s ′ (mod q)

Immediate recovery of the secret key x

▸ That attack (for ECDSA) was applied to the Sony PlayStation
3. Also used to steal some Bitcoins

8/38 ©2017 NTT Secure Platform Laboratories

Sensitivity of the nonce (cont’d)

▸ Nonce = value that can only be used once

▸ However Schnorr nonces are even more sensitive than that!

▸ k should (statistically close to) uniform in Z/qZ. Significant
biases can be used reveal the key

▸ Intuition: linear relation

x = h−1 ⋅ (−s + k) mod q

↝ partial info. on k (e.g. ` known bits) should translate to
partial info. on x (` bits of info)

9/38 ©2017 NTT Secure Platform Laboratories

How do biases occur?

▸ Incorrect implementation
▸ PlayStation 3
▸ GLV/GLS setting: k implicitly defined as k1 + λk2 with k1, k2

of roughly half size; if “half size” is interpreted as ⌈(log2 q)/2⌉
bits, bias can occur

▸ Poor random number generators
▸ Side-channel leakage

▸ e.g. emanations during scalar multiplication revealing the first
few LSBs of k

▸ Fault attacks
▸ errors injected before/during the computation of [k]P forcing
k to a biased value

10/38 ©2017 NTT Secure Platform Laboratories

Classical fault attack on ECDSA

▸ Successfully demonstrated by Naccache et al. against 8-bit
smartcards (PKC 2005)

▸ Upon signature generation, new k generated uniformly at
random in Z/qZ

▸ Typically done machine word by machine word (sample each
word with a random number generator), with rejection
sampling at the end

▸ Glitch attack: inject a fault during the random sampling loop
to cause an early exit, so LSBs or MSBs of k are left equal to
zero

▸ Usual countermeasure: use double loop counters

11/38 ©2017 NTT Secure Platform Laboratories

New: a fault attack on qDSA

▸ Fault injection on a much less protected part of signature
generation: the group generator P

▸ usual ECDSA/EC-Schnorr: a random fault yields a point P̃
outside the curve ↝ scalar multiplication makes no sense

▸ qDSA: x-only arithmetic on X25519 ↝ result on the curve or
its twist

▸ With prob. ≈ 1/4, the faulty generator P̃ is on the curve itself
and has order 4q

▸ qDSA signatures include ±R = ±[k]P instead of the hash
▸ faulty case [q]R̃ = [k]([q]P̃) point of order 4, revealing the 2

LSBs of k
▸ only known up to sign ↝ deduce if the 2 LSBs are 00, 10 or ?1

▸ Suppose we can generate many signatures with the same P̃
(semi-permanent fault setting)

▸ Can check that P̃ has order 4q
▸ Mount attack with 2-bit nonce bias (throw away the ?1 case)

12/38 ©2017 NTT Secure Platform Laboratories

Exploiting the nonce biases

▸ Given biases nonces k , two main approaches to recover x
▸ Lattice-based attack (Howgrave-Graham–Smart;

Nguyen–Shparlinski)
▸ based on solving BDD in a lattice
▸ requires relatively few signatures
▸ for large biases (≳ 5 bits depending on the size of q), very

efficient in practice
▸ for small biases, impractical (lattice dim. too large) or even

inapplicable (hidden vector not close enough)
▸ cannot use more data
▸ bias must be “predictable”

▸ Statistical attack (Bleichenbacher)
▸ based on purely statistical techniques (FFT)
▸ requires many signatures, large space complexity
▸ can in principle deal with arbitrarily small biases
▸ more data improves the attack
▸ irregular biases OK

13/38 ©2017 NTT Secure Platform Laboratories

Current records

▸ Lattice-based attack
▸ 160 bits: 2-bit bias done ([LN13], ≈ 100 sigs., BKZ–90), 1-bit

infeasible
▸ 256 bits: 4-bit easy, 3-bit not easy, 2-bit infeasible?
▸ 384 bits: 6-bit easy, 5 or 4-bit not so easy, 3-bit infeasible?

▸ Statistical attack
▸ 160 bits: 1-bit bias done ([AFGKTZ14], ≈ 230 sigs., 1 TB

RAM)
▸ 256 bits: 2-bit looks hard, 1-bit possible with nation-state

resources and many sigs.?
▸ 384 bits: 5-bit done ([DHMP13], ≈ 4000 sigs.), 4-bit feasible?,

3-bit hard?

14/38 ©2017 NTT Secure Platform Laboratories

Outline

Schnorr signatures with biased nonces
Schnorr signatures
Nonce biases

The lattice approach
Description of the attack
Limitations and extensions

The statistical approach
Attack overview
Using Schroeppel–Shamir

15/38 ©2017 NTT Secure Platform Laboratories

Formal attack setting

▸ We obtain n faulty signatures (hi , si) on messages mi

▸ Each signature generated with nonce ki with ` LSBs equal to
zero:

ki = 2`bi , (0 ≤ b < q/2`)
▸ We thus get relations:

hi ⋅ x ≡ 2`bi − si (mod q)

which we can rewrite as:

x ≡ ui + vibi (mod q)

for known constants ui = −si/hi mod q, vi = 2`/hi mod q.

16/38 ©2017 NTT Secure Platform Laboratories

Orthogonal lattices

▸ Rewrite the previous relation in vector form:

x ≡ ⟨ui ,b⟩ (mod q)

with:

b = (a,b1, . . . ,bn) ∈ Zn+1

ui = (ui/a mod q,0, . . . ,0, vi ,0, . . . ,0) ∈ Zn+1

▸ In particular, b orthogonal mod q to u1 − u2, u2 − u3, . . . ,
un−1 − un

▸ Introduce the lattice L of vectors in Zn+1 orthogonal to those
n − 1 vectors mod q, and such that the first component is a
multiple of a

▸ b ∈ L, relatively short

17/38 ©2017 NTT Secure Platform Laboratories

Recovering b

▸ L is the kernel of the map Zn+1 → (Z/aZ) × (Z/qZ)n−1:

b↦ (b1 mod a, ⟨b,u1 − u2⟩ mod q, . . . , ⟨b,un−1 − un⟩ mod q)

surjective with high probability

▸ Therefore vol(L) = [Zn+1 ∶ L] = a ⋅ qn−1
▸ Gaussian heuristic: the shortest vector in L should be of

length approximately

λ = n + 1

2πe
⋅ vol(L)1/(n+1)

▸ We can hope to recover b if ∥b∥ ≪ λ. Choosing a = q/2`, we
have b ≤

√
n + 1 ⋅ q/2`

▸ Recovering b of course reveals the secret key x

18/38 ©2017 NTT Secure Platform Laboratories

Condition on n

▸ The size condition is thus:

√
n + 1 ⋅ q

2`
≪

√
n + 1

2πe
(q

2`
⋅ qn−1)

1/(n+1)

which simplifies to:

n

n + 1
` ≳ 1

n + 1
log2 q + log2

√
2πe

▸ In particular, the attack only works when
` > log2

√
2πe ≈ 2.05)

▸ constant slightly too large: can be improved by using a
centered b, and taking expected size into account

▸ For fixed `, we need a number of faulty signatures satisfying:

n ≳ log2(q
√

2πe)
` − log2

√
2πe

▸ Large `: close to “information-theoretic” bound (log2 q)/`
19/38 ©2017 NTT Secure Platform Laboratories

Outline

Schnorr signatures with biased nonces
Schnorr signatures
Nonce biases

The lattice approach
Description of the attack
Limitations and extensions

The statistical approach
Attack overview
Using Schroeppel–Shamir

20/38 ©2017 NTT Secure Platform Laboratories

Remarks on the attack

▸ Different from traditional presentation of the attack (uSVP
vs. BDD), but mostly equivalent

▸ Must know the size of the bias(es) to construct the lattice

▸ As already mentioned: hard limit on how small the bias can
get

▸ Having more signatures doesn’t seem to help

21/38 ©2017 NTT Secure Platform Laboratories

Structure of the bias

▸ Attack uses in a crucial way the zero LSBs form of the bias
▸ known LSBs/MSBs of course also OK

▸ Does not generalize easily to more general bias structure
▸ doable: string of zero bits in the middle at known position
▸ hard?: string of zero bits in the middle at unknown position

▸ Recent generalizations with some practical relevance
▸ zero LSBs/MSBs in the τ -adic expansion of k for Kobliz

curves [BFMT16]
▸ zero LSBs/MSBs in ki for k = ∑ kiλi GLV/GLS decomposition
▸ fun fact: can use lattice reduction over Euclidean rings

▸ Hard to formulate general result?

22/38 ©2017 NTT Secure Platform Laboratories

Outline

Schnorr signatures with biased nonces
Schnorr signatures
Nonce biases

The lattice approach
Description of the attack
Limitations and extensions

The statistical approach
Attack overview
Using Schroeppel–Shamir

23/38 ©2017 NTT Secure Platform Laboratories

Bleichenbacher’s attack

▸ Before the lattice attack was proposed, Bleichenbacher
suggested a different approach based on a Fourier notion of
bias

▸ Requires many more signatures for similar parameters, but
applies in principle to arbitrarily small biases

▸ Presented at an IEEE P1363 meeting in 2000, never formally
published. Revisited by De Mulder et al. (CHES 2013),
Aranha et al. (ASIACRYPT 2014).

24/38 ©2017 NTT Secure Platform Laboratories

Overview of Bleichenbacher’s approach (I)

▸ Consider again: we are given signatures (hj , sj) such that, for
the secret key x , the MSBs of the values kj = sj + hjx mod q
vanish.

▸ The sampled bias of a set of points V = (v0,⋯, vL−1) in Z/qZ
defined as Bq(V) = 1

L ∑
L−1
j=0 e2πi ⋅vj/q

▸ Now consider some secret key candidate w ∈ Z/qZ and the
corresponding nonce candidates vj ∶= sj + hjw mod q. Claim:

▸ if w ≠ x , Bq(V) ≈ 1/
√
L is small

▸ if w = x , Bq(V) is close to 1

25/38 ©2017 NTT Secure Platform Laboratories

Range reduction

▸ Peak of the bias function: only for
candidate w exactly equal to x ; would
need to check all possible w ∈ Z/qZ

▸ Clearly infeasible for large q
w

∣Bn(V)∣

1√
L

x

▸ Bleichenbacher’s solution: reduce the
size of hj ’s to [0,L) to broaden the
peak
→ only need to check L evenly-spaced
values in [0,q)

w

∣Bn(V)∣

1√
L

x

26/38 ©2017 NTT Secure Platform Laboratories

Small, sparse linear combinations problem

▸ How do we carry out this range reduction? Linear
combinations!

▸ Input: a list (h0, . . . ,hL−1) of large, random integers (of 160
bits, say)

▸ we can choose L, preferably small

▸ Looking for: many linear combinations ∑ωihi which are
▸ much smaller, e.g. ∣∑ωihi ∣ < 232

▸ very sparse, e.g. ∑∣ωi ∣ ≤ 16

▸ We would like to find many of those linear combinations (say
232)

▸ as fast as possible
▸ using as little memory as possible,
▸ starting with as few hi ’s as possible

27/38 ©2017 NTT Secure Platform Laboratories

Idea 1: lattice reduction

▸ “Short linear combinations” sounds like a lattice problem
▸ So use lattice reduction? (LLL, BKZ)

▸ De Mulder et al.’s approach

▸ Upside: should be able to start from relatively small L

▸ Downside: only get a few linear combinations for each lattice
we reduce + have to use very large lattice dimensions to find
the very sparse combinations we need

▸ Even a single lattice reduction takes seconds with our
parameters, and we need ≈ 232 of them: not really practical

▸ Other issue: for `-bit bias, we really need combinations with
coefficients < 2`

▸ Doable for ` = 5, infeasible for ` = 2

28/38 ©2017 NTT Secure Platform Laboratories

Idea 2: sort and difference

▸ Approach in AC’14 paper: sort-and-difference

1. Sort the list (hi) to get h′0 < ⋅ ⋅ ⋅ < h′L−1
2. Take the successive differences

h′′0 = h′1 − h′0, . . . ,h
′′

L−2 = h′L−1 − h′L−2
▸ We obtain a list of ≈ L elements h′′i , linear combinations of

two elements hi each

▸ On average, two successive elements h′i , h
′

i+1 should have their
log2 L MSBs in common

▸ Hence the h′′i are roughly log2 L bit shorter

▸ Doing this 4 times in total yields ≈ L linear combinations of 16
elements hi , each of size ≈ 160 − 4 × log2 L

▸ Works with L a bit larger than 232, in time O(L logL) and
space O(L) (about 1 TB RAM!)

29/38 ©2017 NTT Secure Platform Laboratories

Idea 3: Schroeppel–Shamir

▸ Shamir’s comment after my presentation at ASIACRYPT: you
can get away with a smaller L and less memory by using the
Schroeppel–Shamir algorithm

▸ Basic principle: instead of looking for short combinations of 2
hi at a time with sort-and-difference, we have techniques to
generate short(er) combinations of 4 (or more) hi in one go

▸ Recently worked this out with an internship student,
A. Takahashi

▸ Surprise realization after we did this: Schroeppel–Shamir was
the method suggested by Bleichenbacher all along!

30/38 ©2017 NTT Secure Platform Laboratories

Outline

Schnorr signatures with biased nonces
Schnorr signatures
Nonce biases

The lattice approach
Description of the attack
Limitations and extensions

The statistical approach
Attack overview
Using Schroeppel–Shamir

31/38 ©2017 NTT Secure Platform Laboratories

Schroeppel–Shamir

▸ At its core, the Schroeppel–Shamir algorithm lets you do the
following

▸ Given two lists (ui), (vi) of N integers, find the M smallest
sums ui + vj (M ≤ N2) in time O((N +M) logN) and space
O(N)

▸ Algorithm is not too complicated if we know the heap data
structure:

1. Assume the list (vi) is sorted (costs O(N logN) time)
2. Store the values ui + v0 associated with the pairs (i ,0) in a

heap (costs O(N logN) time and O(N) space)
3. Repeat M times:
4. Get the smallest element in the heap, which is of the form

ui + vj (associated with (i , j)), and replace it with ui + vj+1
(costs O(logN) time)

32/38 ©2017 NTT Secure Platform Laboratories

How Schroeppel–Shamir helps

▸ So remember our original problem: we have a list of integers,
and we want to find short linear combinations of four
elements at a time (say)

▸ To do so, divide the large list into 4 lists (xi), (yi), (zi), (tj)
of the same size N

▸ Schroeppel–Shamir lets us enumerate the elements xi + yj and
zi + tj in increasing order ((Ln) and (Rm) respectively)

▸ Easy to find short differences between those elements:
1. Let m = n = 0 and D = L0 − R0

2. Repeat:
3. output D = Lm − Rn

4. if D > 0 then increment n else increment m

▸ We thus heuristically get M elements xi + yj − zk − t` which are
≈ log2M bit smaller than the original values (or M/2s

elements which are s + log2M bit smaller), in time
O(M logN) and space O(N)

33/38 ©2017 NTT Secure Platform Laboratories

How Schroeppel–Shamir helps (II)

▸ Numerical application: lets say we start with N = 2α elements
of 160 bits, and use Schroeppel–Shamir to get the entire
sorted lists of sums, i.e. M = N2

▸ First iteration: 22α linear combinations of 4 which are of
≲ 160 − 2α bits, among which we keep the expected 2α

elements of 160 − 3α bits or less

▸ Second iteration: 22α linear combinations of 16 which are of
160 − 5α bits or less, among which we keep the expected 232

of 160 − 7α + 32 bits or less

▸ We want 160 − 7α + 32 ≤ 32, so α ≳ 23 should suffice

▸ We can do all of this in time Õ(246) and space O(223): much
better than the O(232) memory we started with, at the cost
moderate increase in computation

▸ Possible to minimize the length of the first list even further

34/38 ©2017 NTT Secure Platform Laboratories

Complexity estimate: 160 bits

Bias(bit) Algorithm #Round Time Space

S-S 2 246.3 225.1
1

S&D 4 232.8 232.8

2
S-S 3 238.8 221.4

S&D 6 223.7 223.7

3
S-S 3 232.8 218.4

S&D 7 220.9 220.9

4
S-S 4 225.5 214.8

S&D 9 216.9 216.9

5
S-S 5 221.0 212.5

S&D 11 214.2 214.2

35/38 ©2017 NTT Secure Platform Laboratories

Complexity estimate: 256 bits

Bias(bit) Algorithm #Round Time Space

1
S-S 2 273.7 238.9

S&D 5 243.7 243.7

S-S 3 252.0 228.0
2

S&D 6 237.4 237.4

3
S-S 4 240.3 222.2

S&D 8 229.3 229.3

4
S-S 5 238.0 221.0

S&D 10 224.2 224.2

5
S-S 6 238.0 221.0

S&D 12 221.0 221.0

36/38 ©2017 NTT Secure Platform Laboratories

Work in progress

▸ Use this approach to mount the 2-bit bias fault attack on
qDSA

▸ Need for large-scale parallelization:
▸ not so easy with direct Schroeppel–Shamir (due to heaps)
▸ use a simple trick of Howgrave-Graham and Joux to parallelize
▸ + some systems design

▸ More refinements
▸ can improve the attack with more data (keep signatures with

small hi ’s!)
▸ can improve the attack with adaptive signature queries

(Nikolic–Sasaki, AC’15)
▸ asymptotically, can use Generalized Birthday algorithms with

more than 4-way collisions

37/38 ©2017 NTT Secure Platform Laboratories

Thank you!
Dank je!

38/38 ©2017 NTT Secure Platform Laboratories

	Schnorr signatures with biased nonces
	Schnorr signatures
	Nonce biases

	The lattice approach
	Description of the attack
	Limitations and extensions

	The statistical approach
	Attack overview
	Using Schroeppel–Shamir

