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Schnorr signatures

▸ Public parameters: cyclic group G of prime order q, generator
g , hash function H ∶ {0,1}∗ ×G→ Z/qZ

▸ Key pair: secret x
$← Z/qZ, public h = g x

Sign(x ,m)

1. k
$← Z/qZ

2. r ← gk

3. h ← H(m, r)
4. s ← k − hx mod q

5. return (h, s)
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EC-Schnorr signatures

▸ Public parameters: elliptic curve E/Fp, point P ∈ E(Fp) of
prime order q, hash function H ∶ {0,1}∗ × Fp → Z/qZ

▸ Key pair: secret x
$← Z/qZ, public Q = [x]P

Sign(x ,m)

1. k
$← Z/qZ

2. (u, v) ← [k]P
3. h ← H(m,u)
4. s ← k − hx mod q

5. return (h, s)
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Security and variants

▸ Secure (EUF-CMA) if the discrete logarithm is hard in G in
the ROM for H

▸ Common variants:
▸ Hash the public key as well
▸ Deterministic k , e.g. k =MACS(m) for an auxiliary key S
▸ Give out gk (resp. k[P]) instead of h in the signature

▸ EdDSA ≈ EC-Schnorr on X25519; qDSA ≈ Schnorr on
Kummer lines/Kummer surfaces

▸ DSA, ECDSA: badly designed variants of Schnorr (for patent
reasons)

▸ Results in this talk apply to all of the above
▸ Caveat: specific ways of inducing nonce biases may only apply

to a subset of them
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Sensitivity of the nonce

▸ The random value k in signature generation usually called the
nonce

▸ Should never be repeated! If (h, s), (h′, s ′) signatures on m,
m′ with the same value k , we have:

s ≡ k − hx (mod q) s ′ ≡ k − h′x (mod q)

Subtract the two:

(h′ − h) ⋅ x ≡ s − s ′ (mod q)

Immediate recovery of the secret key x

▸ That attack (for ECDSA) was applied to the Sony PlayStation
3. Also used to steal some Bitcoins
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Sensitivity of the nonce (cont’d)

▸ Nonce = value that can only be used once

▸ However Schnorr nonces are even more sensitive than that!

▸ k should (statistically close to) uniform in Z/qZ. Significant
biases can be used reveal the key

▸ Intuition: linear relation

x = h−1 ⋅ (−s + k) mod q

↝ partial info. on k (e.g. ` known bits) should translate to
partial info. on x (` bits of info)
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How do biases occur?

▸ Incorrect implementation
▸ PlayStation 3
▸ GLV/GLS setting: k implicitly defined as k1 + λk2 with k1, k2

of roughly half size; if “half size” is interpreted as ⌈(log2 q)/2⌉
bits, bias can occur

▸ Poor random number generators
▸ Side-channel leakage

▸ e.g. emanations during scalar multiplication revealing the first
few LSBs of k

▸ Fault attacks
▸ errors injected before/during the computation of [k]P forcing
k to a biased value
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Classical fault attack on ECDSA

▸ Successfully demonstrated by Naccache et al. against 8-bit
smartcards (PKC 2005)

▸ Upon signature generation, new k generated uniformly at
random in Z/qZ

▸ Typically done machine word by machine word (sample each
word with a random number generator), with rejection
sampling at the end

▸ Glitch attack: inject a fault during the random sampling loop
to cause an early exit, so LSBs or MSBs of k are left equal to
zero

▸ Usual countermeasure: use double loop counters
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New: a fault attack on qDSA

▸ Fault injection on a much less protected part of signature
generation: the group generator P

▸ usual ECDSA/EC-Schnorr: a random fault yields a point P̃
outside the curve ↝ scalar multiplication makes no sense

▸ qDSA: x-only arithmetic on X25519 ↝ result on the curve or
its twist

▸ With prob. ≈ 1/4, the faulty generator P̃ is on the curve itself
and has order 4q

▸ qDSA signatures include ±R = ±[k]P instead of the hash
▸ faulty case [q]R̃ = [k]([q]P̃) point of order 4, revealing the 2

LSBs of k
▸ only known up to sign ↝ deduce if the 2 LSBs are 00, 10 or ?1

▸ Suppose we can generate many signatures with the same P̃
(semi-permanent fault setting)

▸ Can check that P̃ has order 4q
▸ Mount attack with 2-bit nonce bias (throw away the ?1 case)
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Exploiting the nonce biases

▸ Given biases nonces k , two main approaches to recover x
▸ Lattice-based attack (Howgrave-Graham–Smart;

Nguyen–Shparlinski)
▸ based on solving BDD in a lattice
▸ requires relatively few signatures
▸ for large biases (≳ 5 bits depending on the size of q), very

efficient in practice
▸ for small biases, impractical (lattice dim. too large) or even

inapplicable (hidden vector not close enough)
▸ cannot use more data
▸ bias must be “predictable”

▸ Statistical attack (Bleichenbacher)
▸ based on purely statistical techniques (FFT)
▸ requires many signatures, large space complexity
▸ can in principle deal with arbitrarily small biases
▸ more data improves the attack
▸ irregular biases OK

13/38 ©2017 NTT Secure Platform Laboratories



Current records

▸ Lattice-based attack
▸ 160 bits: 2-bit bias done ([LN13], ≈ 100 sigs., BKZ–90), 1-bit

infeasible
▸ 256 bits: 4-bit easy, 3-bit not easy, 2-bit infeasible?
▸ 384 bits: 6-bit easy, 5 or 4-bit not so easy, 3-bit infeasible?

▸ Statistical attack
▸ 160 bits: 1-bit bias done ([AFGKTZ14], ≈ 230 sigs., 1 TB

RAM)
▸ 256 bits: 2-bit looks hard, 1-bit possible with nation-state

resources and many sigs.?
▸ 384 bits: 5-bit done ([DHMP13], ≈ 4000 sigs.), 4-bit feasible?,

3-bit hard?
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Formal attack setting

▸ We obtain n faulty signatures (hi , si) on messages mi

▸ Each signature generated with nonce ki with ` LSBs equal to
zero:

ki = 2`bi , (0 ≤ b < q/2`)
▸ We thus get relations:

hi ⋅ x ≡ 2`bi − si (mod q)

which we can rewrite as:

x ≡ ui + vibi (mod q)

for known constants ui = −si/hi mod q, vi = 2`/hi mod q.
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Orthogonal lattices

▸ Rewrite the previous relation in vector form:

x ≡ ⟨ui ,b⟩ (mod q)

with:

b = (a,b1, . . . ,bn) ∈ Zn+1

ui = (ui/a mod q,0, . . . ,0, vi ,0, . . . ,0) ∈ Zn+1

▸ In particular, b orthogonal mod q to u1 − u2, u2 − u3, . . . ,
un−1 − un

▸ Introduce the lattice L of vectors in Zn+1 orthogonal to those
n − 1 vectors mod q, and such that the first component is a
multiple of a

▸ b ∈ L, relatively short
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Recovering b

▸ L is the kernel of the map Zn+1 → (Z/aZ) × (Z/qZ)n−1:

b↦ (b1 mod a, ⟨b,u1 − u2⟩ mod q, . . . , ⟨b,un−1 − un⟩ mod q)

surjective with high probability

▸ Therefore vol(L) = [Zn+1 ∶ L] = a ⋅ qn−1
▸ Gaussian heuristic: the shortest vector in L should be of

length approximately

λ = n + 1

2πe
⋅ vol(L)1/(n+1)

▸ We can hope to recover b if ∥b∥ ≪ λ. Choosing a = q/2`, we
have b ≤

√
n + 1 ⋅ q/2`

▸ Recovering b of course reveals the secret key x
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Condition on n

▸ The size condition is thus:

√
n + 1 ⋅ q

2`
≪

√
n + 1

2πe
( q

2`
⋅ qn−1)

1/(n+1)

which simplifies to:

n

n + 1
` ≳ 1

n + 1
log2 q + log2

√
2πe

▸ In particular, the attack only works when
` > log2

√
2πe ≈ 2.05)

▸ constant slightly too large: can be improved by using a
centered b, and taking expected size into account

▸ For fixed `, we need a number of faulty signatures satisfying:

n ≳ log2(q
√

2πe)
` − log2

√
2πe

▸ Large `: close to “information-theoretic” bound (log2 q)/`
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Remarks on the attack

▸ Different from traditional presentation of the attack (uSVP
vs. BDD), but mostly equivalent

▸ Must know the size of the bias(es) to construct the lattice

▸ As already mentioned: hard limit on how small the bias can
get

▸ Having more signatures doesn’t seem to help
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Structure of the bias

▸ Attack uses in a crucial way the zero LSBs form of the bias
▸ known LSBs/MSBs of course also OK

▸ Does not generalize easily to more general bias structure
▸ doable: string of zero bits in the middle at known position
▸ hard?: string of zero bits in the middle at unknown position

▸ Recent generalizations with some practical relevance
▸ zero LSBs/MSBs in the τ -adic expansion of k for Kobliz

curves [BFMT16]
▸ zero LSBs/MSBs in ki for k = ∑ kiλi GLV/GLS decomposition
▸ fun fact: can use lattice reduction over Euclidean rings

▸ Hard to formulate general result?
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Bleichenbacher’s attack

▸ Before the lattice attack was proposed, Bleichenbacher
suggested a different approach based on a Fourier notion of
bias

▸ Requires many more signatures for similar parameters, but
applies in principle to arbitrarily small biases

▸ Presented at an IEEE P1363 meeting in 2000, never formally
published. Revisited by De Mulder et al. (CHES 2013),
Aranha et al. (ASIACRYPT 2014).
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Overview of Bleichenbacher’s approach (I)

▸ Consider again: we are given signatures (hj , sj) such that, for
the secret key x , the MSBs of the values kj = sj + hjx mod q
vanish.

▸ The sampled bias of a set of points V = (v0,⋯, vL−1) in Z/qZ
defined as Bq(V ) = 1

L ∑
L−1
j=0 e2πi ⋅vj/q

▸ Now consider some secret key candidate w ∈ Z/qZ and the
corresponding nonce candidates vj ∶= sj + hjw mod q. Claim:

▸ if w ≠ x , Bq(V ) ≈ 1/
√
L is small

▸ if w = x , Bq(V ) is close to 1
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Range reduction

▸ Peak of the bias function: only for
candidate w exactly equal to x ; would
need to check all possible w ∈ Z/qZ

▸ Clearly infeasible for large q
w

∣Bn(V )∣

1√
L

x

▸ Bleichenbacher’s solution: reduce the
size of hj ’s to [0,L) to broaden the
peak
→ only need to check L evenly-spaced
values in [0,q)

w

∣Bn(V )∣

1√
L

x
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Small, sparse linear combinations problem

▸ How do we carry out this range reduction? Linear
combinations!

▸ Input: a list (h0, . . . ,hL−1) of large, random integers (of 160
bits, say)

▸ we can choose L, preferably small

▸ Looking for: many linear combinations ∑ωihi which are
▸ much smaller, e.g. ∣∑ωihi ∣ < 232

▸ very sparse, e.g. ∑∣ωi ∣ ≤ 16

▸ We would like to find many of those linear combinations (say
232)

▸ as fast as possible
▸ using as little memory as possible,
▸ starting with as few hi ’s as possible
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Idea 1: lattice reduction

▸ “Short linear combinations” sounds like a lattice problem
▸ So use lattice reduction? (LLL, BKZ)

▸ De Mulder et al.’s approach

▸ Upside: should be able to start from relatively small L

▸ Downside: only get a few linear combinations for each lattice
we reduce + have to use very large lattice dimensions to find
the very sparse combinations we need

▸ Even a single lattice reduction takes seconds with our
parameters, and we need ≈ 232 of them: not really practical

▸ Other issue: for `-bit bias, we really need combinations with
coefficients < 2`

▸ Doable for ` = 5, infeasible for ` = 2
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Idea 2: sort and difference

▸ Approach in AC’14 paper: sort-and-difference

1. Sort the list (hi) to get h′0 < ⋅ ⋅ ⋅ < h′L−1
2. Take the successive differences

h′′0 = h′1 − h′0, . . . ,h
′′

L−2 = h′L−1 − h′L−2
▸ We obtain a list of ≈ L elements h′′i , linear combinations of

two elements hi each

▸ On average, two successive elements h′i , h
′

i+1 should have their
log2 L MSBs in common

▸ Hence the h′′i are roughly log2 L bit shorter

▸ Doing this 4 times in total yields ≈ L linear combinations of 16
elements hi , each of size ≈ 160 − 4 × log2 L

▸ Works with L a bit larger than 232, in time O(L logL) and
space O(L) (about 1 TB RAM!)
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Idea 3: Schroeppel–Shamir

▸ Shamir’s comment after my presentation at ASIACRYPT: you
can get away with a smaller L and less memory by using the
Schroeppel–Shamir algorithm

▸ Basic principle: instead of looking for short combinations of 2
hi at a time with sort-and-difference, we have techniques to
generate short(er) combinations of 4 (or more) hi in one go

▸ Recently worked this out with an internship student,
A. Takahashi

▸ Surprise realization after we did this: Schroeppel–Shamir was
the method suggested by Bleichenbacher all along!
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Schroeppel–Shamir

▸ At its core, the Schroeppel–Shamir algorithm lets you do the
following

▸ Given two lists (ui), (vi) of N integers, find the M smallest
sums ui + vj (M ≤ N2) in time O((N +M) logN) and space
O(N)

▸ Algorithm is not too complicated if we know the heap data
structure:

1. Assume the list (vi) is sorted (costs O(N logN) time)
2. Store the values ui + v0 associated with the pairs (i ,0) in a

heap (costs O(N logN) time and O(N) space)
3. Repeat M times:
4. Get the smallest element in the heap, which is of the form

ui + vj (associated with (i , j)), and replace it with ui + vj+1
(costs O(logN) time)
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How Schroeppel–Shamir helps

▸ So remember our original problem: we have a list of integers,
and we want to find short linear combinations of four
elements at a time (say)

▸ To do so, divide the large list into 4 lists (xi), (yi), (zi), (tj)
of the same size N

▸ Schroeppel–Shamir lets us enumerate the elements xi + yj and
zi + tj in increasing order ((Ln) and (Rm) respectively)

▸ Easy to find short differences between those elements:
1. Let m = n = 0 and D = L0 − R0

2. Repeat:
3. output D = Lm − Rn

4. if D > 0 then increment n else increment m

▸ We thus heuristically get M elements xi + yj − zk − t` which are
≈ log2M bit smaller than the original values (or M/2s

elements which are s + log2M bit smaller), in time
O(M logN) and space O(N)
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How Schroeppel–Shamir helps (II)

▸ Numerical application: lets say we start with N = 2α elements
of 160 bits, and use Schroeppel–Shamir to get the entire
sorted lists of sums, i.e. M = N2

▸ First iteration: 22α linear combinations of 4 which are of
≲ 160 − 2α bits, among which we keep the expected 2α

elements of 160 − 3α bits or less

▸ Second iteration: 22α linear combinations of 16 which are of
160 − 5α bits or less, among which we keep the expected 232

of 160 − 7α + 32 bits or less

▸ We want 160 − 7α + 32 ≤ 32, so α ≳ 23 should suffice

▸ We can do all of this in time Õ(246) and space O(223): much
better than the O(232) memory we started with, at the cost
moderate increase in computation

▸ Possible to minimize the length of the first list even further
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Complexity estimate: 160 bits

Bias(bit) Algorithm #Round Time Space

S-S 2 246.3 225.1
1

S&D 4 232.8 232.8

2
S-S 3 238.8 221.4

S&D 6 223.7 223.7

3
S-S 3 232.8 218.4

S&D 7 220.9 220.9

4
S-S 4 225.5 214.8

S&D 9 216.9 216.9

5
S-S 5 221.0 212.5

S&D 11 214.2 214.2
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Complexity estimate: 256 bits

Bias(bit) Algorithm #Round Time Space

1
S-S 2 273.7 238.9

S&D 5 243.7 243.7

S-S 3 252.0 228.0
2

S&D 6 237.4 237.4

3
S-S 4 240.3 222.2

S&D 8 229.3 229.3

4
S-S 5 238.0 221.0

S&D 10 224.2 224.2

5
S-S 6 238.0 221.0

S&D 12 221.0 221.0

36/38 ©2017 NTT Secure Platform Laboratories



Work in progress

▸ Use this approach to mount the 2-bit bias fault attack on
qDSA

▸ Need for large-scale parallelization:
▸ not so easy with direct Schroeppel–Shamir (due to heaps)
▸ use a simple trick of Howgrave-Graham and Joux to parallelize
▸ + some systems design

▸ More refinements
▸ can improve the attack with more data (keep signatures with

small hi ’s!)
▸ can improve the attack with adaptive signature queries

(Nikolic–Sasaki, AC’15)
▸ asymptotically, can use Generalized Birthday algorithms with

more than 4-way collisions
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Thank you!
Dank je!
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