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ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

An isogeny Is @ morphism
hetween two elliptic curves This ve
' rtex re
with finite kernel. CUVVQ E presents an ef|i
0 Over a fin elliptie
ITe field F

The degree of an isogeny is
the size of the kernel (our
isogenies are separable...)

Eo This ed
ge is an isogeny of
\‘/ degree £, a prime number



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

O Any isogeny has a dual of
Eo’\ the same degree (here, #)
going in the opposite
direction
)

.El



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

o Ne.ighbours of Eo have wore
\ neighbours

From Eo, there are other @ — @
isogenies of degree £, going /
to other curves
O Any isogeny has a dual of
Ez. /Eo the same degree (here, #)
going in the opposite
direction

® £, Sowe represent it by an
undirected edge



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

Once all.fhe possible neighbours have been reached.
we obtain the connected graph of £-180gehies of Eg



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES
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This oneis a typical eX



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES
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ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES
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ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

@ Level 2, floor
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ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

Why is this useful? ‘ Level 2 floor

By inspecting solely the structure of the graph, one can infer
that Eo is af “level 1” at #... which tells a lot about the

endoworphiswm ring of Eo!



APPLICATIONS

» Computing the endomorphism ring of an elliptic curve
[Kohel, 1996],

» Counting points [Fouquet and Morain, 2002],

» Random self-reducibility of the discrete logarithm problem
[Jao et al., 2005] (worst case to average case reduction)

» Accelerating the CM method [Sutherland, 2012],

» Computing modular polynomials [Broker et al., 2012]



GENERALISING TO ORDINARY ABELIAN VARIETIES. ..

» These applicati i
ions motivate the search .
to other abelian varieties... for a generalisation

An abelian variety Is a geometric
object (curve, surface...) which'is

also an abelian group (there is an
sddition law on the points).

Elliptic curves = sbelian varieties of

dimension 1.




GENERALISING TO ORDINARY ABELIAN VARIETIES. ..

» These applications motivate the search for a generalisation
to other abelian varieties...

/ A Principally polariseq
O

abelian surface over 4

‘\ // \. ‘/ﬁnh‘e field F
/0 /V\

Isogeny of type (£.¢)




GENERALISING TO ORDINARY ABELIAN VARIETIES. . .

» These applications motivate the search for a generalisation
to other abelian varieties...




GENERANSING TO ORDINARY ABELJAN VARIETIES. .. /
o—

» These app \cations motivate the search for a gen/ea'fiYion




How to study (#,#)-isogeny graphs?
= Focus oninteresting subgraphs
= Pecompose (Z,#)-isogenies into simpler ones
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ENDOMORPHISM RING AND ALGEBRA

» Let & be an ordinary abelian variety of
dimension g over a finite field F = I,

» The endomorphisms of & form a ring K> 0 =End(d)
End(&). 2 |
Ko
» The algebra K=End(&) ® @ is a number
field of degree 2g (a CM-field). g |
Q

» End(&f) is isomorphic to an order O of K

(i.e., a lattice of dimension 2g in K, that is
also a subring).



THE CASE OF ELLIPTIC CURVES

» If o =Eis an elliptic curve, the
dimensionisg = 1.

» K has a maximal order Ok, the ring of K'> O = End(E)

integers of K. 2

» Any order of K is of the form Ko=Q

O =7+ f@/(,
for a positive integer f, the conductor.



THE CASE OF ELLIPTIC CURVES

The “levels” of the volcano of £-isogenies tell how
many times £ divides the conductor. Here, (f,£) = 1.

'\:\0 End = Z + fO,
-~ \

JR
LA

EZ+£f@K

End =Z + 22fO¢



THE CASE OF ELLIPTIC CURVES

Only an £-isogeny can change the valuation at £ of
the conductor.

Horizontal
Pescending o £-isogeny
Z-isogeny / / \:7 End = Z + fOk
. \
/ =7 + Ok

End =Z + 22fO¢

‘/ \ / \‘_) Ascending
e / \ . -isogeny
O ® O



CLASSIFICATION OF ORDERS

» This classification of orders in quadratic fields is the key to
the volcanic structures for elliptic curves.

» Analog in dimension g > 1? For any number field Ky and
quadratic extension K/Kp, we prove the following
classification

Any order 0 of K containing Ok, is of the form
O = @KO + f@/(

for an ideal f of Ok,, the conductor of 0.



CLASSIFICATION OF ORDERS

Any order O of K containing Ok, is of the form

O = @K0+f@K

for an ideal f of Ok,, the conductor of 0.

» This is exactly O = Z + fOx when Ky = Q!

» When 0O contains Ok, we say that @ has maximal real
multiplication (RM).

» For Ko = Q, any order has maximal RM since Ok, = Z.
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[-ISOGENIES

» For an elliptic curve, the conductor is an integer f, which
decomposes as a product of prime numbers: we then look
at £-isogenies where £ is a prime number

» For g > 1 and maximal RM, the conductor is an ideal { of

Ok, and decomposes into prime ideals...

» Notion of [-isogenies, where [ is a prime ideal of O,?

An [-isogeny from & is an isogeny whose kernel is a

proper, Ok,-stable subgroup of A[1].

» Coincides with the “l-isogenies” defined in [lonica
and Thomé, 2014] when g = 2



VOLCANQES AGAIN?

If & has maximal RM (locally at £), and I is a prime ideal of

Ok, above ¢, is the graph of l-isogenies a volcano?

Theorewm: yesl... at least when [ is principal, and all the
units of Ok are totally real!

» First observed in some

/@ \.
/ \‘/ particular case in [lonica and
\ Thomé, 2014]

‘/\ / /\ » When [ is generated by a totally
LA
@ ® @

positive unit, independently
proven in [Martindale, 2017]



VOLCANQES AGAIN?

If & has maximal RM (locally at £), and I is a prime ideal of

Ok, above ¢, is the graph of l-isogenies a volcano?

Theorew: yes!... at least when [ is principal, and all the
units of O are totally real

/’\\/0\ End = O, + fOK

— @KO + 1fOk

o
-
,/ \ o \, End = Ok, + 120k



VOLCANQES AGAIN?

If [ is not principal? The graph is oriented!

O

/\

IS
St Bl

@ End = @KO + I3f@/<

End = @KO + f@/(
= Oy + 11Ok

End = @KO + sz@K



VOLCANQES AGAIN?

If O« has complex vnits 2 Multiplicities appear

For instance, K = Q(Ts), Ko = @(Ts + {5'), and [ = 20k,
(‘

SN

End = @KO + f@[(

= @KO + If@/{

® End = Ok, + [%{0k
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COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

End = Ok, + Ok

= Ok, + 1Ok

End = @KO + sz@K




COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

Eld

([ A
#(level 0) = #Cl(Ok, + fO)




COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

End

( A
#(level 0) = #Cl(Ok, + fO)

(N(I) — 1) - #(level 0) if [ splitsin K
N(I) - #(level 0) if [ ramifies in K
(N(L) + 1) - #(level 0) iflisinertin K



COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

End

Level 0 | #(level 0) = #Cl(Ok, + fO)

Warning: these are simplified formulas (need
§ extraassumptions on the units of o)

» #(level 1) = (N() — 1) - #(level 0) if [ splitsin K
» #(level 1) = N(I) - #(level 0) if [ ramifies in K
» #(level 1) = (N(X) + 1) - #(level 0) iflisinertin K




COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

} #(level 0) = #Cl(Ok, + fOK)

(N(L) — 1) - #(level 0)
#(level 1) =< N(I) - #(level 0)
(N(L) + 1) - #(level 0)

\i #(level 2) = N(I) - #(level 1)

#(level i + 1) = N(I) - #(level i) fori=1




COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

J #(level 0) = 3

#(level 1) = (N(X) - 1) - #(level 0) = 3

] #(level 2) = NID) - #(level 1) = 6

in this example, #(level 0) = 3 I splits, and N(x) = 2



COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

It could lead to a voleano...

EsS B B _ W W —

(—: X FY X Level \jfi

in this example, #(level 0) = 3 I splits, and N(x) = 2



COUNTING VERTICES AT EACH LEVEL

» Firstingredient: we can count the number of vertices on
each level using the class number formula.

It could lead to a voleano...

or to all sorts of ugly graphs...

We need to look at the edge strueture

‘ . O .. ® . l.eve /i

in this example, #(level 0) = 3 I splits, and N(x) = 2



COUNTING OUTGOING EDGES

» Asimple fact: let o be a variety on the [-isogeny graph.
There is a total of N(I)+1 outgoing I-isogenies from .

» Why ? Recall the definition:

An [-isogeny from & is an isogeny whose kernel is a

proper, Ok,-stable subgroup of A[I].

» A[l]is an Ok,/l-vector space of dimension 2.
» It has N(I)+1 many vector subspaces of dimension 1.

» So there are N(I)+1 proper Ok,-stable subgroups of &[L].



COUNTING OUTGOING EDGES

» Among the N(I)+1 outgoing l-isogenies from &, how many
are horizontal? ascending? descending?

» This is the core of the proof. The idea is to build a
correspondence between

[-isogenies from &, and
certain sub-lattices of the Tate module of &

and use the action of the field K on these lattices.

» No details in this presentation, just the results:



COUNTING OUTGOING EDGES

» Among the N(I)+1 outgoing l-isogenies from &, how many
are horizontal? ascending? descending?

» If o is at the surface (level 0):

e No ascending [-isogeny (obviously),

No horizontal l-isogeny  if Lisinertin O = End(&),

One horizontal l-isogeny if [ ramifies, Pu

Two horizontal I-isogenies if [ splits, //
Ly

* The other ones are descending



COUNTING OUTGOING EDGES

» Among the N(I)+1 outgoing l-isogenies from &, how many
are horizontal? ascending? descending?

» If o is not at the surface:

/\
e One ascending [-isogeny, \
No horizontal [-isogeny, PN
* The other are descending (N(I) many). / \
TA Y

vV



VOLCANOES ALREADY?

» With the number of vertices per level, and what we have
seen about outgoing edges, do we have volcanoes?




VOLCANOES ALREADY?

» With the number of vertices per level, and what we have
seen about outgoing edges, do we have volcanoes?

7,
/'/7‘ \\_\./ \.

Not at all...



DESCENDING, THEN ASCENDING

» If o — AB is a descending [-isogeny, where does the
unique ascending isogeny from 9% go?

/ f\@/‘cg = A /A|]]

» ltgoesto € = A/ANL].



DESCENDING, THEN ASCENDING

» If o — AB is a descending [-isogeny, where does the
unique ascending isogeny from 9% go?

M o
B3 SB> B
» ltgoesto € = A/ANL].

» If L =(a)is principal, then the endomorphism a induces an
isomorphism & = o/A[1].



DESCENDING, THEN ASCENDING

» If o — AB is a descending [-isogeny, where does the
unique ascending isogeny from 9% go?

A = A/A|l]
N
B3 B By

» ltgoesto € = A/ANL].

» If L =(a)is principal, then the endomorphism a induces an
isomorphism & = o/A[1].



A LAST DETAIL: MULTIPLICITIES

» Suppose there is a descending [-isogeny f — .

» Then, there are [End(&f)* : End(98)*] distinct kernels of
[-isogeny o — 3.

A/ A|1]

[End(&)* : End(AB \ /

» The index [End(&)* : End(98)*] is always 1 if all the units of
K are totally real (it is the case of any quartic K # Q(Cs))



CONCLUDING

» Putting all this together, we obtain a precise description of
the isogeny graphs.

» They are volcanoes exactly when K has no complex units
(no multiplicities on the edges) and [ is principal (the edges
are undirected).



A NOTE ON FINITENESS

» Some earlier slide claimed:

#(level i + 1) = N(I) - #(level i) fori=1

- The graph is
| infinite... over the
algebraic closure

' Qver a finite field,
only a finite part
remains
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IN DIMENSION 2:

£,2)-ISOGENIES



(£,£)-ISOGENIES

» Let o be a principally polarised, ordinary abelian surface.

» An (£,£)-isogeny is an isogeny & = 9B whose kernel is a
maximal isotropic subgroup of &[£] for the Weil pairing.

» (£,£)-isogenies are easier to compute! Much more efficient
than [-isogenies...



(£,£)-ISOGENIES

We show that (£,£)-isogenies preserving the maximal RM are
exactly:

» The l-isogenies if £ isinertin Ko (i.e., [ = £0k,)

» The compositions of an [1-isogeny with an [»-isogeny if £
splits or ramifies as 20, = [11, (the split case generalises a
result of [lonica and Thomé, 2014])



GRAPHS OF (£,¢)-ISOGENIES PRESERVING THE RM
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GRAPHS OF (£,¢)-ISOGENIES PRESERVING THE RM
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GRAPHS OF (£,¢)-ISOGENIES PRESERVING THE RM
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GRAPHS OF (£,¢)-ISOGENIES PRESERVING THE RM

Assume 20k = 12



WHERE TO GO FROM THERE?

» We described the structure of graphs of (£,£)-isogenies
preserving the maximal RM.

» Itis also interesting to look at (£,£)-isogenies changing the
RM. We can describe this graph locally.

» In particular, if the RM is not maximal, we show that there is
an (£,£)-isogeny increasing it.

» Afirst application: these results allow to describe an
algorithm finding a path of (£,£)-isogenies to a variety with
maximal endomorphism ring.
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