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AN INTRODUCTION TO



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

This vertex represents an elliptic curve E0 over a finite field F

Another elliptic curve over F

This edge is an isogeny of 
degree 𝓵, a prime number

E0

E1

An isogeny is a morphism 

between two elliptic curves, 

with finite kernel. 

The degree of an isogeny is 

the size of the kernel (our 

isogenies are separable…)



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

Any isogeny has a dual of 
the same degree (here, 𝓵) 
going in the opposite 
direction

E1

E0



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

Any isogeny has a dual of 
the same degree (here, 𝓵) 
going in the opposite 
direction

So we represent it by an 
undirected edge

From E0, there are other 
isogenies of degree 𝓵, going 
to other curves

E1

E2 E0

E3

Neighbours of E0 have more neighbours



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

E0

Once all the possible neighbours have been reached, we obtain the connected graph of 𝓵-isogenies of E0



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

E0

This one is a typical example!



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

E0

A cycle

This one is a typical example!



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

E0

Disjoint isomorphic copies of a tree 

rooted on the cycle

This one is a typical example!

A cycle



E0

Level 0, surface

Level 1

Level 2, floor

ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES



E0

Level 0, surface

Level 1

Level 2, floorAn isogeny volcano



E0

Level 0, surface

Level 1

Level 2, floor(sometimes “isogeny tutu")



E0

Level 0, surface

Level 1

Level 2, floor

ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

Why is this useful?
By inspecting solely the structure of the graph, one can infer 
that E0 is at “level 1” at 𝓵… which tells a lot about the 
endomorphism ring of E0!



APPLICATIONS

▸ Computing the endomorphism ring of an elliptic curve 
[Kohel, 1996], 

▸ Counting points [Fouquet and Morain, 2002], 

▸ Random self-reducibility of the discrete logarithm problem 
[Jao et al., 2005] (worst case to average case reduction) 

▸ Accelerating the CM method [Sutherland, 2012], 

▸ Computing modular polynomials [Bröker et al., 2012]



GENERALISING TO ORDINARY ABELIAN VARIETIES…

▸ These applications motivate the search for a generalisation 
to other abelian varieties…

An abelian variety is a geometric 

object (curve, surface…) which is 

also an abelian group (there is an 

addition law on the points). 

Elliptic curves = abelian varieties of 

dimension 1.



GENERALISING TO ORDINARY ABELIAN VARIETIES…

▸ These applications motivate the search for a generalisation 
to other abelian varieties…

A principally polarised abelian surface over a finite field F

Isogeny of type (𝓵,𝓵)
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▸ These applications motivate the search for a generalisation 
to other abelian varieties…



GENERALISING TO ORDINARY ABELIAN VARIETIES…

▸ These applications motivate the search for a generalisation 
to other abelian varieties…



GENERALISING TO ORDINARY ABELIAN VARIETIES…

How to study (𝓵,𝓵)-isogeny graphs? 
➡ Focus on interesting subgraphs 
➡ Decompose (𝓵,𝓵)-isogenies into simpler ones



ENDOMORPHISM 

RINGS



ENDOMORPHISM RING AND ALGEBRA

▸ Let 𝓐 be an ordinary abelian variety of 
dimension g over a finite field F = 𝔽q. 

▸ The endomorphisms of 𝓐 form a ring 
End(𝓐). 

▸ The algebra K = End(𝓐) ⊗ ℚ is a number 
field of degree 2g (a CM-field). 

▸ End(𝓐) is isomorphic to an order 𝓞 of K 
(i.e., a lattice of dimension 2g in K, that is 
also a subring).

K ⊃ 𝓞 ≅ End(𝓐)

K0

ℚ

2

g



THE CASE OF ELLIPTIC CURVES

▸ If 𝓐 = E is an elliptic curve, the 
dimension is g = 1. 

▸ K has a maximal order 𝓞K, the ring of 
integers of K. 

▸ Any order of K is of the form 
𝓞 = ℤ + f𝓞K, 

 for a positive integer f, the conductor.

K ⊃ 𝓞 ≅ End(E)

K0 = ℚ

2



THE CASE OF ELLIPTIC CURVES

End ≅ ℤ + f𝓞K 

End ≅ ℤ + ℓf𝓞K 

End ≅ ℤ + ℓ2f𝓞K 

The “levels” of the volcano of ℓ-isogenies tell how 
many times ℓ divides the conductor. Here, (f,ℓ) = 1.



THE CASE OF ELLIPTIC CURVES

End ≅ ℤ + f𝓞K 

End ≅ ℤ + ℓf𝓞K 

End ≅ ℤ + ℓ2f𝓞K 

Only an ℓ-isogeny can change the valuation at ℓ of 
the conductor.

Descending 
𝓵-isogeny

Ascending 
𝓵-isogeny

Horizontal 
𝓵-isogeny



CLASSIFICATION OF ORDERS

▸ This classification of orders in quadratic fields is the key to 
the volcanic structures for elliptic curves. 

▸ Analog in dimension g > 1? For any number field K0 and 
quadratic extension K/K0, we prove the following 
classification

Any order 𝓞 of K containing 𝓞K0 is of the form 
𝓞 = 𝓞K0 + 𝔣𝓞K  

for an ideal 𝔣 of 𝓞K0, the conductor of 𝓞.



CLASSIFICATION OF ORDERS

▸ This is exactly 𝓞 = ℤ + f𝓞K when K0 = ℚ! 

▸ When 𝓞 contains 𝓞K0, we say that 𝓞 has maximal real 
multiplication (RM). 

▸ For K0 = ℚ, any order has maximal RM since 𝓞K0 = ℤ.

Any order 𝓞 of K containing 𝓞K0 is of the form 
𝓞 = 𝓞K0 + 𝔣𝓞K  

for an ideal 𝔣 of 𝓞K0, the conductor of 𝓞.



VOLCANOES 
AGAIN?



   -ISOGENIES

▸ For an elliptic curve, the conductor is an integer f, which 
decomposes as a product of prime numbers: we then look 
at ℓ-isogenies where ℓ is a prime number 

▸ For g > 1 and maximal RM, the conductor is an ideal 𝔣 of 
𝓞K0, and decomposes into prime ideals… 

▸ Notion of 𝖑-isogenies, where 𝖑 is a prime ideal of 𝓞K0?

An 𝖑-isogeny from 𝓐 is an isogeny whose kernel is a 
proper, 𝓞K0-stable subgroup of 𝓐[𝖑].

𝖑

▸ Coincides with the “𝖑-isogenies” defined in [Ionica 
and Thomé, 2014] when g = 2



VOLCANOES AGAIN?

If 𝓐 has maximal RM (locally at ℓ), and 𝖑 is a prime ideal of 
𝓞K0 above ℓ, is the graph of 𝖑-isogenies a volcano?

Theorem: yes!… at least when 𝖑 is principal, and all the 
units of 𝓞K are totally real!

‣ First observed in some 
particular case in [Ionica and 
Thomé, 2014] 

‣ When 𝖑 is generated by a totally 
positive unit, independently 
proven in [Martindale, 2017]



VOLCANOES AGAIN?

If 𝓐 has maximal RM (locally at ℓ), and 𝖑 is a prime ideal of 
𝓞K0 above ℓ, is the graph of 𝖑-isogenies a volcano?

Theorem: yes!… at least when 𝖑 is principal, and all the 
units of 𝓞K are totally real!

End ≅ 𝓞K0 + 𝔣𝓞K

End ≅ 𝓞K0 + 𝖑𝔣𝓞K

End ≅ 𝓞K0 + 𝖑2𝔣𝓞K



VOLCANOES AGAIN?

If 𝖑 is not principal? The graph is oriented!

End ≅ 𝓞K0 + 𝔣𝓞K

End ≅ 𝓞K0 + 𝖑𝔣𝓞K

End ≅ 𝓞K0 + 𝖑2𝔣𝓞K

End ≅ 𝓞K0 + 𝖑3𝔣𝓞K



VOLCANOES AGAIN?
If 𝓞K has complex units ? Multiplicities appear

End ≅ 𝓞K0 + 𝔣𝓞K

End ≅ 𝓞K0 + 𝖑𝔣𝓞K

End ≅ 𝓞K0 + 𝖑2𝔣𝓞K

5

For instance, K = ℚ(ζ5), K0 = ℚ(ζ5 + ζ5  ), and 𝖑 = 2𝓞K0.-1



PROOF
MAIN STEPS OF THE



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

Level 0

Level 1

Level 2

End ≅ 𝓞K0 + 𝔣𝓞K

End ≅ 𝓞K0 + 𝖑𝔣𝓞K

End ≅ 𝓞K0 + 𝖑2𝔣𝓞K



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

#(level 0) = #Cl(𝓞K0 + 𝔣𝓞K)Level 0

Level 1

Level 2

#(level 1) = ?

End{
#Cl(𝓞K0 + 𝖑𝔣𝓞K)



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

#(level 0) = #Cl(𝓞K0 + 𝔣𝓞K)Level 0

Level 1

Level 2

#(level 1) = ?

‣ #(level 1) = (N(𝖑) − 1) ∙ #(level 0)     if 𝖑 splits in K 
‣ #(level 1) = N(𝖑) ∙ #(level 0)               if 𝖑 ramifies in K 
‣ #(level 1) = (N(𝖑) + 1) ∙ #(level 0)     if 𝖑 is inert in K

End{



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

#(level 0) = #Cl(𝓞K0 + 𝔣𝓞K)Level 0

Level 1

Level 2

#(level 1) = ?

‣ #(level 1) = (N(𝖑) − 1) ∙ #(level 0)     if 𝖑 splits in K 
‣ #(level 1) = N(𝖑) ∙ #(level 0)               if 𝖑 ramifies in K 
‣ #(level 1) = (N(𝖑) + 1) ∙ #(level 0)     if 𝖑 is inert in K

Warning: these are simplified formulas (need extra assumptions on the units of 𝓞K)

End{



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

#(level 0) = #Cl(𝓞K0 + 𝔣𝓞K)Level 0

Level 1

Level 2 #(level 2) = N(𝖑) ∙ #(level 1) 

#(level 1) =
‣ (N(𝖑) − 1) ∙ #(level 0)
‣ N(𝖑) ∙ #(level 0)
‣ (N(𝖑) + 1) ∙ #(level 0){

#(level i + 1) = N(𝖑) ∙ #(level i)     for i ≥ 1



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

Level 0

Level 1

Level 2

in this example, #(level 0) = 3, 𝖑 splits, and N(𝖑) = 2

#(level 0) = 3

#(level 2) = N(𝖑) · #(level 1) = 6

#(level 1) = (N(𝖑) - 1) · #(level 0) = 3



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

Level 0

Level 1

Level 2

in this example, #(level 0) = 3, 𝖑 splits, and N(𝖑) = 2

It could lead to a volcano…



COUNTING VERTICES AT EACH LEVEL

▸ First ingredient: we can count the number of vertices on 
each level using the class number formula.

Level 0

Level 1

Level 2

in this example, #(level 0) = 3, 𝖑 splits, and N(𝖑) = 2

It could lead to a volcano…

or to all sorts of ugly graphs…
We need to look at the edge structure



COUNTING OUTGOING EDGES

▸ A simple fact: let 𝓐 be a variety on the 𝖑-isogeny graph. 
There is a total of N(𝖑)+1 outgoing 𝖑-isogenies from 𝓐. 

▸ Why ? Recall the definition:

An 𝖑-isogeny from 𝓐 is an isogeny whose kernel is a 
proper, 𝓞K0-stable subgroup of 𝓐[𝖑].

‣ 𝓐[𝖑] is an 𝓞K0/𝖑-vector space of dimension 2. 

‣ It has N(𝖑)+1 many vector subspaces of dimension 1. 

‣ So there are N(𝖑)+1 proper 𝓞K0-stable subgroups of 𝓐[𝖑].



COUNTING OUTGOING EDGES

▸ Among the N(𝖑)+1 outgoing 𝖑-isogenies from 𝓐, how many 
are horizontal? ascending? descending?

▸ This is the core of the proof. The idea is to build a 
correspondence between  

• 𝖑-isogenies from 𝓐, and  

• certain sub-lattices of the Tate module of 𝓐  

and use the action of the field K on these lattices.

▸ No details in this presentation, just the results:



COUNTING OUTGOING EDGES

▸ Among the N(𝖑)+1 outgoing 𝖑-isogenies from 𝓐, how many 
are horizontal? ascending? descending? 

▸ If 𝓐 is at the surface (level 0):

• No ascending 𝖑-isogeny (obviously), 

• No horizontal 𝖑-isogeny       if 𝖑 is inert in 𝓞 = End(𝓐), 

• One horizontal 𝖑-isogeny     if 𝖑 ramifies, 

• Two horizontal 𝖑-isogenies  if 𝖑 splits, 

• The other ones are descending



COUNTING OUTGOING EDGES

▸ Among the N(𝖑)+1 outgoing 𝖑-isogenies from 𝓐, how many 
are horizontal? ascending? descending? 

▸ If 𝓐 is not at the surface:

• One ascending 𝖑-isogeny,  

• No horizontal 𝖑-isogeny, 

• The other are descending (N(𝖑) many).



VOLCANOES ALREADY?

Not yet…

▸ With the number of vertices per level, and what we have 
seen about outgoing edges, do we have volcanoes?



VOLCANOES ALREADY?

Not yet…

▸ With the number of vertices per level, and what we have 
seen about outgoing edges, do we have volcanoes?

2
Not at all…



DESCENDING, THEN ASCENDING

▸ If 𝓐 ⟶ 𝓑 is a descending 𝖑-isogeny, where does the 
unique ascending isogeny from 𝓑 go?

𝓐

𝓑

𝓒

▸ It goes to 𝓒 ≅ 𝓐/𝓐[𝖑].

≅ 𝓐/𝓐[𝖑]

…



DESCENDING, THEN ASCENDING

▸ If 𝓐 ⟶ 𝓑 is a descending 𝖑-isogeny, where does the 
unique ascending isogeny from 𝓑 go?

𝓐

𝓑

𝓒

▸ It goes to 𝓒 ≅ 𝓐/𝓐[𝖑]. 

▸ If 𝖑 = (α) is principal, then the endomorphism α induces an 
isomorphism 𝓐 ≅ 𝓐/𝓐[𝖑].

≅ 𝓐/𝓐[𝖑]

𝓑2𝓑3 1



DESCENDING, THEN ASCENDING

▸ If 𝓐 ⟶ 𝓑 is a descending 𝖑-isogeny, where does the 
unique ascending isogeny from 𝓑 go?

𝓐

𝓑
▸ It goes to 𝓒 ≅ 𝓐/𝓐[𝖑]. 

▸ If 𝖑 = (α) is principal, then the endomorphism α induces an 
isomorphism 𝓐 ≅ 𝓐/𝓐[𝖑].

≅ 𝓐/𝓐[𝖑]

𝓑2𝓑3 1



A LAST DETAIL: MULTIPLICITIES

▸ Suppose there is a descending 𝖑-isogeny 𝓐 ⟶ 𝓑. 

▸ Then, there are [End(𝓐)× : End(𝓑)×] distinct kernels of        
𝖑-isogeny 𝓐 ⟶ 𝓑.

𝓐

𝓑

[End(𝓐)× : End(𝓑)×]

▸ The index [End(𝓐)× : End(𝓑)×] is always 1 if all the units of 
K are totally real (it is the case of any quartic K ≠ ℚ(ζ5))

1

𝓐/𝓐[𝖑]



CONCLUDING

▸ Putting all this together, we obtain a precise description of 
the isogeny graphs. 

▸ They are volcanoes exactly when K has no complex units 
(no multiplicities on the edges) and 𝖑 is principal (the edges 
are undirected).



A NOTE ON FINITENESS
▸ Some earlier slide claimed:

#(level i + 1) = N(𝖑) ∙ #(level i)     for i ≥ 1

The graph is 
infinite… over the 
algebraic closure

Over a finite field, 
only a finite part 
remains

Defined over the finite field F



(ℓ,ℓ)-ISOGENIES
IN DIMENSION 2:



(ℓ,ℓ)-ISOGENIES

▸ Let 𝓐 be a principally polarised, ordinary abelian surface. 

▸ An (ℓ,ℓ)-isogeny is an isogeny 𝓐 → 𝓑 whose kernel is a 
maximal isotropic subgroup of 𝓐[ℓ] for the Weil pairing. 

▸ (ℓ,ℓ)-isogenies are easier to compute! Much more efficient 
than 𝖑-isogenies…



(ℓ,ℓ)-ISOGENIES

We show that (ℓ,ℓ)-isogenies preserving the maximal RM are 
exactly: 

▸ The 𝖑-isogenies if ℓ is inert in K0 (i.e., 𝖑 = ℓ𝓞K0) 

▸ The compositions of an 𝖑1-isogeny with an 𝖑2-isogeny if ℓ 
splits or ramifies as ℓ𝓞K0 = 𝖑1𝖑2 (the split case generalises a 
result of [Ionica and Thomé, 2014])



GRAPHS OF (ℓ,ℓ)-ISOGENIES PRESERVING THE RM

Assume 𝓵𝓞K0 = 𝖑2



GRAPHS OF (ℓ,ℓ)-ISOGENIES PRESERVING THE RM

Assume 𝓵𝓞K0 = 𝖑2



GRAPHS OF (ℓ,ℓ)-ISOGENIES PRESERVING THE RM

Assume 𝓵𝓞K0 = 𝖑2



GRAPHS OF (ℓ,ℓ)-ISOGENIES PRESERVING THE RM

Assume 𝓵𝓞K0 = 𝖑2



WHERE TO GO FROM THERE?

▸ We described the structure of graphs of (ℓ,ℓ)-isogenies 
preserving the maximal RM. 

▸ It is also interesting to look at (ℓ,ℓ)-isogenies changing the 
RM. We can describe this graph locally. 

▸ In particular, if the RM is not maximal, we show that there is 
an (ℓ,ℓ)-isogeny increasing it. 

▸ A first application: these results allow to describe an 
algorithm finding a path of (ℓ,ℓ)-isogenies to a variety with 
maximal endomorphism ring.
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