

Introduction to Pairings

Diego F. Aranha
 dfaranha@ic.unicamp.br

Please check the slides (or Wikipedia) for the protocol specifications!

IBE with Type-1 Pairing

Implement the Boneh-Franklin Identity-Based Encryption (slide 20) system using the Weil pairing defined over a supersingular curve. You can follow the steps below to define a toy curve we can play with (thanks to Craig for the parameters!):

1. Let $p = 7691$ and let $E/\mathbb{F}_p : y^2 = x^3 + 1$ with embedding degree $k = 2$. Define $\mathbb{F}_{p^2} = \mathbb{F}_p(i)$ where $i^2 + 1 = 0$. Let $P = (2693, 4312) \in E(\mathbb{F}_p)$. Both curves $E(\mathbb{F}_p)$ and $E(\mathbb{F}_{p^2})$ have a subgroup of points of order $r = 641$. Define the base field, quadratic extension and elliptic curve. Compute and factor the order of the curve over the base field and quadratic extension.
2. Implement a function to hash strings to points in the curve. A simple (and non-ideal) deterministic way of performing this consists in hashing to the x -coordinate of the point and incrementing x until a point is found. You can use the function `SHA1` in MAGMA that receives as input a string of hexadecimal digits and function `StringToInteger` to convert the result back to an integer. Beware of cofactors!
3. Implement a function to hash elements from \mathbb{F}_{p^2} to integers. This can be done by splitting the input into two \mathbb{F}_p elements, converting the concatenation to a string and using `SHA1`.
4. Implement the key generation, encryption and decryption functions for the scheme. For a suitable pairing, you can use the `WeilPairing` in MAGMA which receives points over $E(\mathbb{F}_{p^2})$. A distortion map $\psi : (x, y) \rightarrow (\xi_3 x, y)$ is defined for this curve for cube root ξ_3 . The \oplus operator can be implemented through `BitwiseXor` which receives integers as operands.
5. Verify the correctness of the implementation using a test message.

Important: Please notice that the `SHA1` hash function is insecure and was used for illustration purposes only (and because MAGMA apparently does not have `SHA2`).

BLS with Type-1 and Type-3 Pairings

Implement the BLS signature scheme (slide 17) using parameters from the previous section.

Bonus: Start a new implementation instantiating the pairing groups with prime-order Barreto-Naehrig curves having embedding degree $k = 12$. You can check the last few slides for some background material on BN curves, as specified below:

1. Let $x = -(2^{62} + 2^{55} + 1)$. Let $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$ and $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$ define primes p, r for the base field and the curve order, respectively. Define the extensions $\mathbb{F}_{p^2}, \mathbb{F}_{p^6}, \mathbb{F}_{p^{12}}$ as in the slides using the quadratic/cubic non-residue $\xi = i + 1$ for $\mathbb{F}_{p^2} = \mathbb{F}_p(i)$ and $i^2 + 1 = 0$.
2. Define the curve over the base field $E(\mathbb{F}_P) : y^2 = x^3 + 2$ and the sextic ($d = 6$) twist $E(\mathbb{F}_{p^2}) : y^2 = x^3 + 2/\xi$. Compact generators for $E(\mathbb{F}_p)$ and $E(\mathbb{F}_{p^2})$ are $G = (-1, 1)$ and $[h]G'$ for cofactor $h = 2p - r$ and $G' = (-i, 1)$. This is a set of realistic parameters initially proposed at the 128-bit security level, but it is now around 100 bits due to the recent attacks.
3. For the choice of pairing, use the `ReducedTatePairing` from MAGMA, which takes points with coordinates over the full extension $\mathbb{F}_{p^{12}}$. The untwisting isomorphism maps points from $E(\mathbb{F}_{p^2})$ to $E(\mathbb{F}_{p^{12}})$ by computing $\psi : (x, y) \rightarrow (\xi^2 x, \xi^3 y)$.
4. Implement the key generation, signature and verification functionalities. Choose wisely which groups among \mathbb{G}_1 and \mathbb{G}_2 will represent public keys and signatures.
5. Verify the correctness of the scheme by signing and verifying a simple message.