

Introduction to Pairings

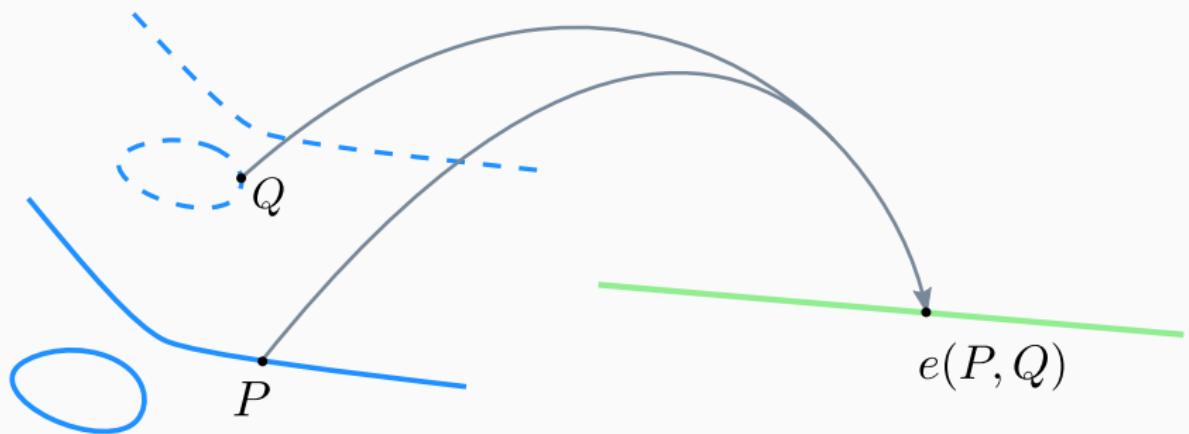
ECC “Summer” School

Diego F. Aranha

November 12, 2017

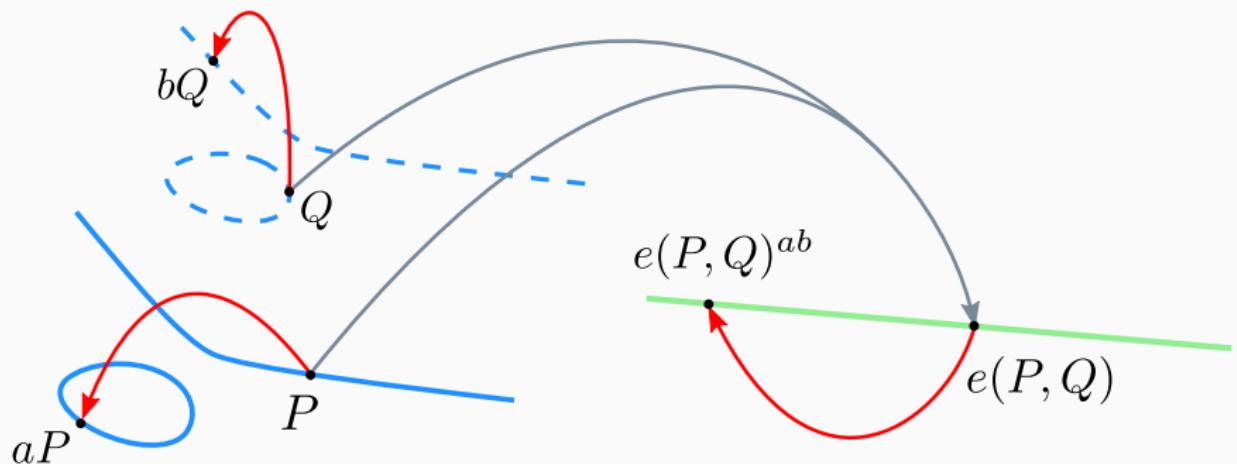
Institute of Computing – University of Campinas

What is a pairing?



Why a bilinear pairing?

$$e(P + R, Q) = e(P, Q) \cdot e(R, Q) \text{ and } e(P, Q + S) = e(P, Q) \cdot e(P, S)$$



Introduction

Elliptic Curve Cryptography (ECC):

- Underlying problem **harder** than integer factoring (RSA)
- Same security level with **smaller** parameters
- Efficiency in storage (**short** keys) and execution time

Pairing-Based Cryptography (PBC):

- Initially **destructive**
- Allows for **innovative** protocols
- Makes curve-based cryptography more **flexible**

Introduction

Pairing-Based Cryptography (PBC) enables many elegant solutions to cryptographic problems:

- **Implicit certification schemes** (IBC, CLPKC, etc.)
- **Short signatures** (in group elements, BLS, BBS)
- **More efficient key agreements** (Joux's 3DH, NIKDS)
- **Low-depth homomorphic encryption** (BGN and variants)
- **Isogeny-based cryptography** (although not postquantum)

Pairing computation is the **most expensive** operation in PBC.

Net week: State-of-the art techniques to make it faster!

Elliptic curves

An **elliptic curve** is the set of solutions $(x, y) \in \mathbb{F}_{q^m} \times \mathbb{F}_{q^m}$ that satisfy the Weierstrass equation

$$E : y^2 = x^3 + ax + b$$

where $a, b \in \mathbb{F}_{q^m}$ with $\Delta \neq 0$, and a **point at infinity** ∞ .

A degree d **twist** E' of E is a curve isomorphic to E over the algebraic closure of \mathbb{F}_{q^m} . The only *possible* degrees for elliptic curves are $d \in \{2, 3, 4, 6\}$.

Important: Very convenient mathematical setting where pairings can be constructed and evaluated efficiently.

Elliptic curves

Definitions

The order n of the curve is the number of points that satisfy the curve equation.

The **Hasse condition** states that $n = q^m + 1 - t$, $|t| \leq 2\sqrt{q^m}$.

The curve is **supersingular** when q divides t .

More definitions

The **order** of point P is the smallest integer r such that $rP = \infty$. We always have $r|n$.

The **r -torsion subgroup** ($E(\mathbb{F}_{q^m})[r]$) is the set of points P in which their order divides r .

Bilinear pairings

Let $\mathbb{G}_1 = \langle P \rangle$ and $\mathbb{G}_2 = \langle Q \rangle$ be additive groups and \mathbb{G}_T be a multiplicative group such that $|\mathbb{G}_1| = |\mathbb{G}_2| = |\mathbb{G}_T| = \text{prime } r$.

Definition

An efficiently-computable map $e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$ is an **admissible bilinear map** if the following properties are satisfied:

1. *Bilinearity*: given $(V, W) \in \mathbb{G}_1 \times \mathbb{G}_2$ and $(a, b) \in \mathbb{Z}_r^*$:

$$e(aV, bW) = e(V, W)^{ab} = e(abV, W) = e(V, abW) = e(bV, aW).$$

2. *Non-degeneracy*: $e(P, Q) \neq 1_{\mathbb{G}_T}$, where $1_{\mathbb{G}_T}$ in \mathbb{G}_T .

A general pairing

$$e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$$

- \mathbb{G}_1 is typically a subgroup of $E(\mathbb{F}_q)$.
- \mathbb{G}_2 is typically a subgroup of $E(\mathbb{F}_{q^k})$.
- \mathbb{G}_T is a multiplicative subgroup of $\mathbb{F}_{q^k}^*$.

Hence pairing-based cryptography involves arithmetic in \mathbb{F}_{q^k} .

Problem: In practice, we want small k for computable pairing!

Definitions

The **embedding degree** of the curve is the smallest integer k such that $r|(q^k - 1)$.

In other words, it is the **smallest** extension of \mathbb{F}_q in which we can **embed** the r -torsion group. For efficiency, we want the largest d such that $d|k$.

Random curves have $k \approx q$, but supersingular curves have $k \leq 6$ and there are **families** of ordinary curves with $k < 50$.

A general pairing

$$e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$$

Cryptographic schemes require multiple operations in pairing groups:

1. **Scalar multiplication, membership, compression** in \mathbb{G}_1 and \mathbb{G}_2 .
2. **Exponentiation, membership, compression** in \mathbb{G}_T .
3. **Hashing** strings into groups \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T .
4. **Efficient maps** between \mathbb{G}_1 and \mathbb{G}_2 .
5. **Efficient pairing computation.**

Problem: No concrete instantiation supports last three simultaneously!

Pairing types

If $\mathbb{G}_1 = \mathbb{G}_2$, the pairing is **symmetric** (or Type-1) and defined over a supersingular curve equipped with a **distortion map**

$$\psi : E(\mathbb{F}_q)[r] \rightarrow E(\mathbb{F}_{q^k})[r].$$

If $\mathbb{G}_1 \neq \mathbb{G}_2$, the pairing is **asymmetric** (or Type-3) and \mathbb{G}_2 is chosen as the group of points in the **twist** that is isomorphic to a subgroup of $E(\mathbb{F}_{q^k})[r]$. There is no **efficient** map $\psi : \mathbb{G}_2 \rightarrow \mathbb{G}_1$.

Important: Supersingular curves over small characteristic ($q = 2, 3$) are **broken** by quasi-polynomial algorithm by [Barbulescu et al. 2014]!

A general pairing

$$e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$$

Classical problems:

- **DLP**: Recover a from $\langle g, g^a \rangle$
- **CDHP**: Compute g^{ab} from $\langle g, g^a, g^b \rangle$

Underlying problems:

- **ECDLP**: Recover a from $\langle P, aP \rangle$
- **BCDHP**: Compute $e(P, Q)^{abc}$ from $\langle P, aP, bP, cP, Q, aQ, bQ, cQ \rangle$

Security of pairings

There are multiple security requirements to satisfy:

- The (EC)DLP problem must be hard in $\mathbb{G}_1, \mathbb{G}_2$ and \mathbb{G}_T .
- Parameters in $\mathbb{G}_1, \mathbb{G}_2$ should be large enough.
- Good balance can be found by choosing the **right** k .

The value $\rho = \frac{\log q}{\log r}$ describes how good the balance is ($\rho = 1$ is optimal) for a certain set of parameters.

Important: Plenty **research** into suitable curves for good values of k .

Applications

The first cryptographic application of pairings was attacking ECDLP!

The Menezes-Okamoto-Vanstone (MOV) attack

Given P and $Q = aP$ on curve E , find a :

1. Find point S of order n such that $e(P, Q) \neq 1_{\mathbb{G}_T}$.
2. Compute $e(P, S) = g$.
3. Compute $e(Q, S) = e(aP, S) = e(P, S)^a = g^a$.
4. Solve the DLP on $\langle g, g^a \rangle$ in \mathbb{G}_T .

Best general known algorithms for ECDLP run in $O(\sqrt{n})$, but there are **subexponential methods** such as *index calculus* for DLP in \mathbb{G}_T .

Note: this attacked **killed** the faster supersingular curves in the 90s.

Applications

Conventional paradigm (PKI):

- Three-party key agreement [Joux 2000]
- Short signatures [Boneh et al. 2001]

Alternate paradigms:

- Non-interactive identity-based AKE [Sakai et al. 2001]
- Identity-based encryption [Boneh et al., Sakai et al. 2001]

Applications

Joux's one-round Tripartite Diffie-Hellman [Joux 2000]:

- **Key generation:**

1. Parties A, B, C generate short-lived secrets $a, b, c \in \mathbb{Z}_r^*$ respectively
2. Parties A, B, C broadcast aG, bG, cG to the other parties

- **Key sharing:**

1. A computes $K_A = e(bG, cG)^a$
2. B computes $K_B = e(aG, cG)^b$
3. C computes $K_C = e(aG, bG)^c$

Correctness: Shared key is $K = K_A = K_B = K_C = e(G, G)^{abc}$.

Applications

Boneh-Lynn-Schacham (BLS) short signatures in the conventional PKI paradigm [Boneh et al. 2001]:

- **Key generation:**

1. Select a private key $x \in \mathbb{Z}_r^*$
2. Compute the public key $V \leftarrow xP$

- **Signature:**

1. Compute $H \leftarrow h(M) \in \mathbb{G}_1$
2. Sign $S \leftarrow xH$

- **Verification:**

1. Compute $H \leftarrow h(M)$
2. Verify if $e(P, S) = e(V, H)$

Correctness: Works because $e(P, S) = e(P, xH) = e(xP, H) = e(V, H)$.

Applications

Identity-based encryption **facilitates** certification of public keys. If Alice wants to encrypt a message to Bob, she must be sure that an adversary did not **replace** his public key.

Conventional: Employ a *Certificate Authority* (CA) to compute a **signature** linking Bob and his public key. Alice can check the signature and learns Bob's public key.

However, certificates are **expensive** to manage (procedures, audits, revocation), thus Alice could use some trivially authentic information about Bob (e-mail address?).

Solution: Introduce authority to generate and distribute private keys.

Applications

Non-interactive identity-based AKE [Sakai et al. 2001]:

- **Initialization:**

1. Central authority generates master key $s \in \mathbb{Z}_r^*$.

- **Key generation:**

1. User with identity ID_i computes $P_i = H(ID_i)$
2. Central authority generates private key $S_i = sP_i$

- **Key derivation:**

1. Users A e B compute shared key $e(S_A, P_B) = e(S_B, P_A)$

Correctness: $e(S_A, P_B) = e(sP_A, P_B) = e(P_A, sP_B) = e(S_B, P_A)$.

Applications

Identity-based encryption [Boneh and Franklin 2001]:

- **Initialization:**

1. Authority (PKG) generates master key $s \in \mathbb{Z}_r^*$ and computes its public key $P_{pub} = sP$
2. Fix hash functions $H_1 : \{0, 1\}^* \rightarrow \mathbb{G}_1$ and $H_2 : \mathbb{G}_T \rightarrow \{0, 1\}^m$.

- **Key generation:**

1. User with identity ID_i computes public key $P_i = H_1(ID_i)$
2. Central authority generates private key $S_i = sP_i$

- **Encryption:**

1. To encrypt m , Bob selects random ℓ and computes $R = \ell P$ and $c = m \oplus H_2(e(P_A, P_{pub})^\ell)$.
2. Bob sends (R, c) to Alice.

- **Decryption:**

1. Alice uses her private key to compute $c \oplus H_2(e(S_A, R)) = c \oplus H_2(e(sP_A, \ell P)) = c \oplus H_2(e(P_A, P_{pub})^\ell) = m$.

A general pairing

$$e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$$

Many moving parts (parameters):

- What choice of curve?
- What is an appropriate embedding degree k ?
- How to balance hardness of DLP among different groups?

Note: Hardness of \mathbb{G}_T is given by $k \cdot |q|$.

Problem: How to build and compute map e ?

Definitions

A **divisor** is a formal sum of points and integer coefficients:

$$\mathcal{D} = \sum_{P \in E} d_P(P)$$

The **degree** of a divisor is the sum of integer coefficients:

$$\deg(\mathcal{D}) = \sum_{P \in E} d_P$$

The **support** of a divisor is the set of points P with $d_P \neq 0$.

Pairing computation

The set of divisors forms an abelian group:

$$\sum_{P \in E} a_P(P) + \sum_{P \in E} b_P(P) = \sum_{P \in E} (a_P + b_P)(P)$$

Repeated addition of a divisor to itself is given by:

$$n\mathcal{D} = \sum_{P \in E} (nd_P)(P)$$

Pairing computation

Divisors are a mathematical device convenient to store **poles and zeroes** of rational functions and their **multiplicities**.

The divisor of a non-zero rational function $f : E(\mathbb{F}_{q^k}) \rightarrow \mathbb{F}_{q^k}$ is called **principal divisor** and defined as $\text{div}(f) = \sum_{P \in E} \text{ord}_P(P)$, where ord_P is the **multiplicity** of P .

If \mathcal{D} is a principal divisor, then $\deg(\mathcal{D}) = 0$ and $\sum_{P \in E} d_P P = \infty$.

Two divisors \mathcal{C} and \mathcal{D} are **equivalent** ($\mathcal{C} \sim \mathcal{D}$) if their difference $(\mathcal{C} - \mathcal{D})$ is a principal divisor.

Pairing computation

When $\text{div}(f)$ and \mathcal{D} have disjoint support:

$$f(\mathcal{D}) = \prod_{P \in E} f(P)^{d_P}$$

Let $P \in E(\mathbb{F}_{q^k})[r]$ and \mathcal{D} a divisor equivalent to $(P) - (\infty)$.

Since $rP = \infty$ and $\deg(\mathcal{D}) = 0$, the divisor $r\mathcal{D}$ is principal and there is a function $f_{r,P}$ such that $\text{div}(f_{r,P}) = r\mathcal{D} = r(P) - r(\infty)$.

Pairings are defined by the evaluation of $f_{r,P}$ on divisors.

Problem: How to construct and compute $f_{r,P}$?

Pairing computation

Let P, Q be r -torsion points. The pairing $e(P, Q)$ is defined by the evaluation of $f_{r,P}$ at a divisor related to Q .

[Miller 1986] constructed $f_{r,P}$ in stages combining **Miller functions** evaluated at divisors.

[Barreto et al. 2002] showed how to evaluate $f_{r,P}$ at Q using the final exponentiation employed by the Tate pairing.

Pairing computation

Let $g_{U,V}$ be the line equation through points $U, V \in E(\mathbb{F}_{q^k})$ and g_U the shorthand for $g_{U,-U}$.

For any integers a and b , we have:

1. $f_{a+b,P}(\mathcal{D}) = f_{a,P}(\mathcal{D}) \cdot f_{b,P}(\mathcal{D}) \cdot \frac{g_{aP,bP}(\mathcal{D})}{g_{(a+b)P}(\mathcal{D})}$
2. $f_{2a,P}(\mathcal{D}) = f_{a,P}(\mathcal{D})^2 \cdot \frac{g_{aP,aP}(\mathcal{D})}{g_{2aP}(\mathcal{D})}$
3. $f_{a+1,P}(\mathcal{D}) = f_{a,P}(\mathcal{D}) \cdot \frac{g_{(a)P,P}(\mathcal{D})}{g_{(a+1)P}(\mathcal{D})}$

Miller's algorithm

Algorithm 1 Miller's Algorithm [Miller 1986, Barreto et al. 2002].

Input: $r = \sum_{i=0}^{\log_2 r} r_i 2^i, P, Q$.

Output: $e_r(P, Q)$.

```
1:  $T \leftarrow P$ 
2:  $f \leftarrow 1$ 
3: for  $i = \lfloor \log_2(r) \rfloor - 1$  downto 0 do
4:    $T \leftarrow 2T$ 
5:    $f \leftarrow f^2 \cdot \frac{g_{T,T}(\mathcal{D})}{g_{2T}(\mathcal{D})}$ 
6:   if  $r_i = 1$  then
7:      $T \leftarrow T + P$ 
8:      $f \leftarrow f \cdot \frac{g_{T,P}(\mathcal{D})}{g_{T+P}(\mathcal{D})}$ 
9:   end if
10: end for
11: return  $f$ 
```

Miller's algorithm

Let l be the line equation that passes through T and P in the addition $T + P$.

Let v be the vertical line that passes through T and $-T$.

Recall that:

$$f(\mathcal{D}) = \prod_{P \in E} f(P)^{d_P}$$

We can replace:

1. $g_{T,P}(\mathcal{D}) = l_{T,P}((Q + R) - (R)) = \frac{l_{T,P}(Q+R)}{l_{T,P}(R)};$
2. $g_T(\mathcal{D}) = v_T((Q + R) - (R)) = \frac{v_T(Q+R)}{v_T(R)}.$

Miller's algorithm

Algorithm 2 Miller's Algorithm [Miller, 1986].

Input: $r = \sum_{i=0}^{\log_2 r} r_i 2^i, P, Q.$

Output: $e_r(P, Q).$

```
1:  $T \leftarrow P$ 
2:  $f \leftarrow 1$ 
3: for  $i = \lfloor \log_2(r) \rfloor - 1$  downto 0 do
4:    $T \leftarrow 2T$ 
5:    $f \leftarrow f^2 \cdot \frac{I_{T,T}(Q+R)v_{2T}(R)}{v_{2T}(Q+R)I_{T,T}(R)}$ 
6:   if  $r_i = 1$  then
7:      $T \leftarrow T + P$ 
8:      $f \leftarrow f \cdot \frac{I_{T,P}(Q+R)v_{T+P}(R)}{v_{T+P}(Q+R)I_{T,P}(R)}$ 
9:   end if
10: end for
11: return  $f$ 
```

Weil pairing

Let \mathcal{P}, \mathcal{Q} divisors equivalent to $(P) - (\infty)$, $(Q) - (\infty)$, respectively. The Weil pairing is the map:

$$\begin{aligned} w_r &: E(\mathbb{F}_q)[r] \times E(\mathbb{F}_{q^k})[r] \rightarrow \mathbb{F}_{q^k}^* \\ w_r(P, Q) &= (-1)^r \cdot \frac{f_{r,P}(\mathcal{Q})}{f_{r,Q}(\mathcal{P})}. \end{aligned}$$

It turns out that we can evaluate the functions over **points** instead of divisors [Miller 1986].

Tate pairing

The **reduced** Tate pairing is the map:

$$\begin{aligned} e_r &: E(\mathbb{F}_q)[r] \times E(\mathbb{F}_{q^k})[r] \rightarrow \mathbb{F}_{q^k}^* \\ e_r(P, Q) &= f_{r,P}(\mathcal{D})^{(q^k-1)/r}. \end{aligned}$$

The final exponentiation by $(q^k - 1)/r$ allows [Barreto et al. 2002]:

- Choosing R with coordinates in a subfield to eliminate $I(R), v(R)$
- Choosing R as ∞ and evaluate f on Q instead of \mathcal{D}
- Using a distortion map to eliminate $v(Q)$
- Choosing k even and construct a quadratic extension such that the coordinates of Q are in a subfield to eliminate $v(Q)$

Miller's algorithm

Algorithm 3 Miller's Algorithm [Miller, 1986].

Input: $r = \sum_{i=0}^{\log_2 r} r_i 2^i, P, Q.$

Output: $e_r(P, Q).$

```
1:  $T \leftarrow P$ 
2:  $f \leftarrow 1$ 
3: for  $i = \lfloor \log_2(r) \rfloor - 1$  downto 0 do
4:    $T \leftarrow 2T$ 
5:    $f \leftarrow f^2 \cdot \frac{I_{T,T}(Q+R)v_{2T}(R)}{v_{2T}(Q+R)I_{T,T}(R)}$ 
6:   if  $r_i = 1$  then
7:      $T \leftarrow T + P$ 
8:      $f \leftarrow f \cdot \frac{I_{T,P}(Q+R)v_{T+P}(R)}{v_{T+P}(Q+R)I_{T,P}(R)}$ 
9:   end if
10: end for
11: return  $f$ 
```

Tate pairing

Algorithm 4 Tate pairing [Barreto et al. 2002].

Input: $r = \sum_{i=0}^{\log_2 r} r_i 2^i, P, Q$.

Output: $e_r(P, Q)$.

```
1:  $T \leftarrow P$ 
2:  $f \leftarrow 1$ 
3:  $s \leftarrow r - 1$ 
4: for  $i = \lfloor \log_2(s) \rfloor - 1$  downto 0 do
5:    $T \leftarrow 2T$ 
6:    $f \leftarrow f^2 \cdot I_{T,T}(Q)$ 
7:   if  $r_i = 1, i \neq 0$  then
8:      $T \leftarrow T + P$ 
9:      $f \leftarrow f \cdot I_{T,P}(Q)$ 
10:  end if
11: end for
12: return  $f^{(q^k - 1/r)}$ 
```

Pairing computation

Important: How can we optimize it?

The main optimization is to reduce the **length** of the loop keeping the **Hamming weight** of r small. There are several ways of doing this: Ate, Ate_i, R-ate, $\chi - ate$.

The **optimal pairing** construction reduces the loop iterations by a factor of $\phi(k)$.

We can observe that Miller's Algorithm employs:

- Extension field arithmetic
- Elliptic curve arithmetic
- Base field arithmetic.

Tate pairing

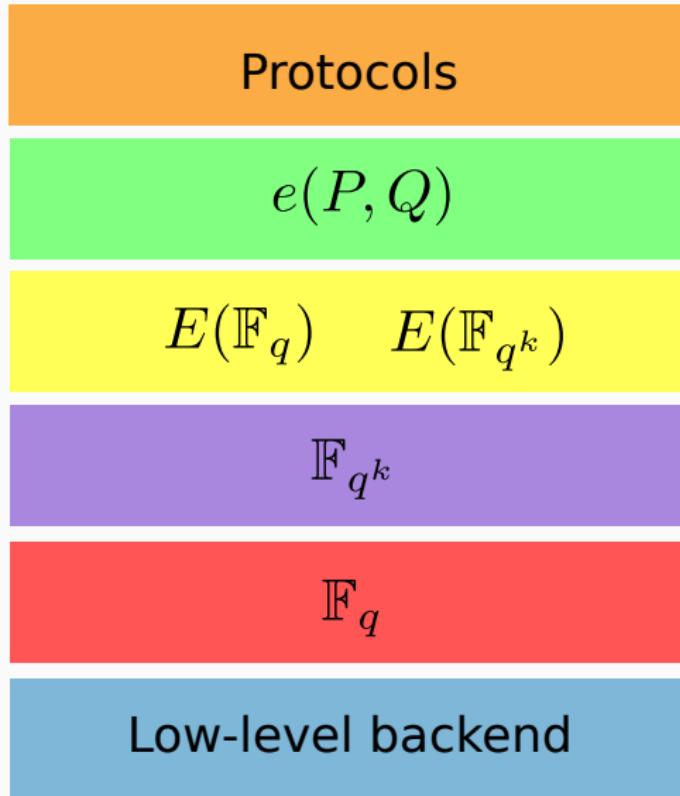
Algorithm 5 Tate pairing [Barreto et al. 2002].

Input: $r = \sum_{i=0}^{\log_2 r} r_i 2^i, P, Q$.

Output: $e_r(P, Q)$.

```
1:  $T \leftarrow P$ 
2:  $f \leftarrow 1$ 
3:  $s \leftarrow r - 1$ 
4: for  $i = \lfloor \log_2(s) \rfloor - 1$  downto 0 do
5:    $T \leftarrow 2T$ 
6:    $f \leftarrow f^2 \cdot I_{T,T}(Q)$ 
7:   if  $s_i = 1$  then
8:      $T \leftarrow T + P$ 
9:      $f \leftarrow f \cdot I_{T,P}(Q)$ 
10:  end if
11: end for
12: return  $f^{(q^k - 1/r)}$ 
```

Arithmetic levels



Curve families

BN curves: $k = 12$, $\rho \approx 1$

$$p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$$

$$r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1, \quad t(x) = 6z^2 + 1$$

BLS12 curves: $k = 12$, $\rho \approx 1.5$

$$p(x) = (x - 1)^2(x^4 - x^2 + 1)/3 + x,$$

$$r(x) = x^4 - x^2 + 1, \quad t(x) = x + 1$$

KSS18 curves: $k = 18$, $\rho \approx 4/3$

$$p(x) = (x^8 + 5x^7 + 7x^6 + 37x^5 + 188x^4 + 259x^3 + 343x^2 + 1763x + 2401)/21$$

$$r(x) = (x^6 + 37x^3 + 343)/343, \quad t(x) = (x^4 + 16z + 7)/7$$

BLS24 curves: $k = 24$, $\rho \approx 1.25$

$$p(x) = (x - 1)^2(x^8 - x^4 + 1)/3 + x,$$

$$r(x) = x^8 - x^4 + 1, \quad t(x) = x + 1$$

Barreto-Naehrig curves

Let x be an integer such that $p(x)$ and $r(x)$ below are prime:

- $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$
- $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$

Then $y^2 = x^3 + b$, $b \in \mathbb{F}_p$ is a curve of **order** r and **embedding degree** $k = 12$ [Barreto and Naehrig 2012].

Important: BN curves **used to be** optimal at the 128-bit security level.

Optimal ate pairing

$$a_{opt} : \mathbb{G}_2 \times \mathbb{G}_1 \rightarrow \mathbb{G}_T$$

$$(Q, P) \rightarrow (f_{r, Q}(P) \cdot I_{rQ, \pi_p(Q)}(P) \cdot I_{rQ + \pi_p(Q), -\pi_p^2(Q)}(P))^{(p^{12}-1)/n}$$

with $r = 6x + 2$, $\mathbb{G}_1 = E(\mathbb{F}_p)$, $\mathbb{G}_2 = E(\mathbb{F}_{p^2})[n]$.

Fix $x = -(2^{62} + 2^{55} + 1)$ and $b = 2$. Since $p \equiv 3 \pmod{4}$, the tower can be:

- $\mathbb{F}_{p^2} = \mathbb{F}_p[i]/(i^2 - \beta)$, where $\beta = -1$
- $\mathbb{F}_{p^4} = \mathbb{F}_{p^2}[s]/(s^2 - \epsilon)$, where $\xi = 1 + i$
- $\mathbb{F}_{p^6} = \mathbb{F}_{p^2}[v]/(v^3 - \xi)$, where $\xi = 1 + i$
- $\mathbb{F}_{p^{12}} = \mathbb{F}_{p^4}[v]/(t^3 - s)$ or $\mathbb{F}_{p^6}[w]/(w^2 - v)$

Important: Choice of representation changes formulas (and costs)!

There are many different software implementations of pairings:

1. **RELIC**: UNICAMP, flexible and state-of-the-art.
2. **Ate-pairing**: CINVESTAV, used to be state-of-the-art.
3. **mcl**: new library at “new” 128-bit level by Shigeo Mitsunari.
4. **MIRACL**: special support for constrained platforms.
5. **Panda**: not as efficient, but constant-time.
6. **PBC**: on top of GMP, horribly outdated.

Questions?

Code, documentation and tests at the `pairings` branch of my private OpenSSL fork:

<https://github.com/dfaranha/openssl>

Recommended further reading: *Pairings for Beginners*, by Craig Costello, and the early papers by Mike Scott for the optimization techniques.

Questions?

D. F. Aranha

dfaranha@ic.unicamp.br

[@dfaranha](https://twitter.com/dfaranha)

References

- [1] Victor S. Miller: The Weil Pairing, and Its Efficient Calculation. *J. Cryptology* 17(4): 235-261 (2004)
- [2] Dan Boneh, Matthew K. Franklin: Identity-Based Encryption from the Weil Pairing. *SIAM J. Comput.* 32(3): 586-615 (2003)
- [3] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, Michael Scott: Efficient Algorithms for Pairing-Based Cryptosystems. *CRYPTO* 2002: 354-368
- [4] Ryuichi Sakai, Masao Kasahara: ID based Cryptosystems with Pairing on Elliptic Curve. *IACR Cryptology ePrint Archive* 2003: 54 (2003)

References

- [5] Antoine Joux: A One Round Protocol for Tripartite Diffie-Hellman. *J. Cryptology* 17(4): 263-276 (2004)
- [6] Paulo S. L. M. Barreto, Michael Naehrig: Pairing-Friendly Elliptic Curves of Prime Order. *Selected Areas in Cryptography 2005*: 319-331
- [7] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, Julio López: Faster Explicit Formulas for Computing Pairings over Ordinary Curves. *EUROCRYPT 2011*: 48-68
- [8] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, Emmanuel Thom?: A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic. *EUROCRYPT 2014*: 1-16