

Software Engineering Aspects of Elliptic Curve Cryptography

Joppe W. Bos
Real World Crypto 2017

SECURE CONNECTIONS
FOR A SMARTER WORLD

NXP Semiconductors

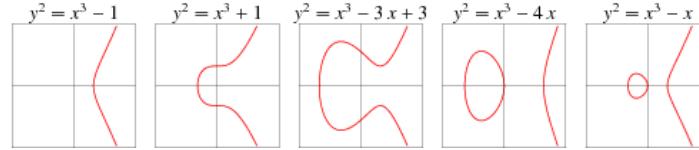
Operations in > 35 countries, more than 130 facilities
≈ 45,000 employees

Research & Development
≈ 11,200 engineers in 23 countries

Elliptic Curves

What is an elliptic curve?

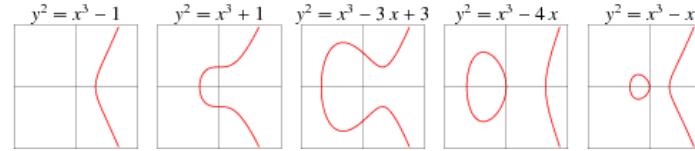
Not an ellipse!



Elliptic Curves

What is an elliptic curve?

Not an ellipse!



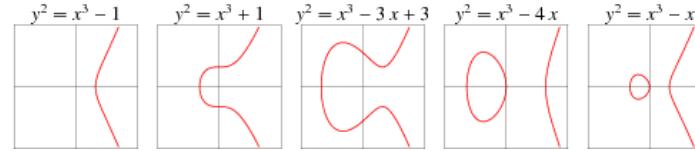
Mathematical perspective

Smooth, projective algebraic curve of genus one which together with a point “at infinity” forms an abelian variety

Elliptic Curves

What is an elliptic curve?

Not an ellipse!



Mathematical perspective

Smooth, projective algebraic curve of genus one which together with a point “at infinity” forms an abelian variety

Practical perspective

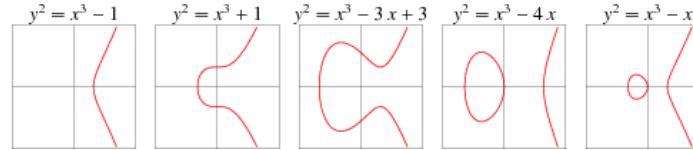
When defined over a large prime field an elliptic curve simply is

$$E/\mathbb{F}_p: y^2 = x^3 + ax + b \quad \text{such that} \quad 4a^3 + 27b^2 \neq 0$$

Elliptic Curves

What is an elliptic curve?

Not an ellipse!



Mathematical perspective

Smooth, projective algebraic curve of genus one which together with a point “at infinity” forms an abelian variety

Practical perspective

When defined over a large prime field an elliptic curve simply is

$$E/\mathbb{F}_p: y^2 = x^3 + ax + b \quad \text{such that} \quad 4a^3 + 27b^2 \neq 0$$

Engineering perspective

An “algorithm” which needs to be implemented in a “secure” way

Goal of this Lecture

- Creating ECC implementations is **easy**
 - Play around with Sage, Magma
 - Even in C this is trivial

Goal of this Lecture

- Creating ECC implementations is **easy**
 - Play around with Sage, Magma
 - Even in C this is trivial
- Creating efficient (performance / memory / binary size) ECC implementations is **a challenge**

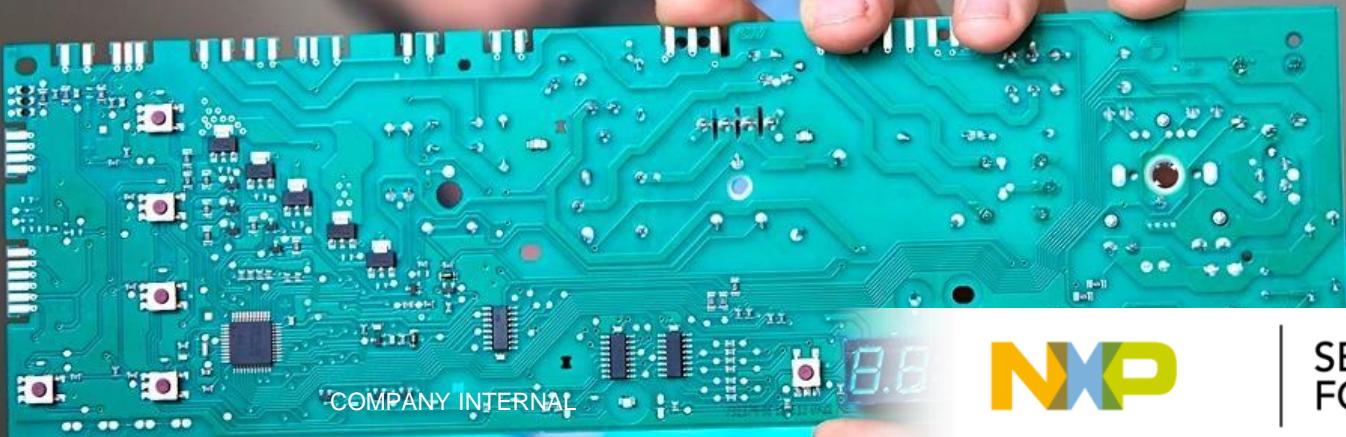
Goal of this Lecture

- Creating ECC implementations is **easy**
 - Play around with Sage, Magma
 - Even in C this is trivial
- Creating efficient (performance / memory / binary size) ECC implementations is **a challenge**
- Creating efficient and secure ECC implementations is **hard**
 - Define “secure”?

Goal.

- Show some examples how different settings of “secure” have an impact on ECC software design in practice.
- Common mistakes made in practice.

ECC in Practice Security 101



SECURE CONNECTIONS
FOR A SMARTER WORLD

Elliptic Curves in Hardware and Software in Practice

We see an increase in support for ECC in software, for example

- 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”
- Around **5 million hosts** support ECC in TLS / SSH
- Many TLS servers prefer ciphersuites with ECDHE

Elliptic Curves in Hardware and Software in Practice

We see an increase in support for ECC in software, for example

- 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”
- Around **5 million hosts** support ECC in TLS / SSH
- Many TLS servers prefer ciphersuites with ECDHE

Hardware ECC

- ✓ Currently, ECC coprocessors are used
 - ✓ in **billions** of smart cards securing ID cards, passports and banking
 - ✓ for 15 years in devices supporting the Digital Transmission Content Protection system

(Short-term) future: Internet-of-Things, prediction

- ✓ 5 billion things at the end of 2015
- ✓ 25 billion things around 2020

- For asymmetric crypto, ECC is the logical choice: small keys, fast on embedded platforms, etc
- Many “things” need to communicate securely with user-apps and possibly the world wide web
- Hardware and software implementation will start to talk to each other (more frequently)!

ECC Keys

Domain parameters

$$(p, a, b, G, n, h)$$

- $p \in \mathbb{Z}$ prime number which defines \mathbb{F}_p
- $a, b \in \mathbb{F}_p$ define $y^2 = x^3 + ax + b$
- $G = (x, y) \in E(\mathbb{F}_p)$
- $n \in \mathbb{Z}$ prime order of G
- $h \in \mathbb{Z}$ co-factor, $h = \#E(\mathbb{F}_p)/n$

ECC Keys

Domain parameters

$$(p, a, b, G, n, h)$$

- $p \in \mathbb{Z}$ prime number which defines \mathbb{F}_p
- $a, b \in \mathbb{F}_p$ define $y^2 = x^3 + ax + b$
- $G = (x, y) \in E(\mathbb{F}_p)$
- $n \in \mathbb{Z}$ prime order of G
- $h \in \mathbb{Z}$ co-factor, $h = \#E(\mathbb{F}_p)/n$

Private key: $d \in \mathbb{Z}/n\mathbb{Z}$

Public key: $P = d \cdot G \in E(\mathbb{F}_p)$

ECC Keys

Domain parameters

$$(p, a, b, G, n, h)$$

- $p \in \mathbb{Z}$ prime number which defines \mathbb{F}_p
- $a, b \in \mathbb{F}_p$ define $y^2 = x^3 + ax + b$
- $G = (x, y) \in E(\mathbb{F}_p)$
- $n \in \mathbb{Z}$ prime order of G
- $h \in \mathbb{Z}$ co-factor, $h = \#E(\mathbb{F}_p)/n$

These domain parameters are publicly available through named identifiers

Private key: $d \in \mathbb{Z}/n\mathbb{Z}$

Public key: $P = d \cdot G \in E(\mathbb{F}_p)$

NIST	SEC	ANSI X9.62	OpenSSL
Curve P-192	secp192r1	prime192v1	prime192v1
Curve P-224	secp224r1		secp224r1
Curve P-256	secp256r1	prime256v1	prime256v1
Curve P-384	secp384r1		secp384r1
Curve P-521	secp521r1		secp521r1

Programming 101

Low level: The implementation → the basics

```
static int buffer[128];

int read_buffer(int index) {
    if (index < 128)
        return buffer[index];
    return ERROR;
}
```

What is wrong with this code?

Programming 101

Low level: The implementation → the basics

```
static int buffer[128];

int read_buffer(int index) {
    if (index < 128)
        return buffer[index];
    return ERROR;
}
```

What is wrong with this code?

Buffer underrun!

Programming 101

```
static int buffer[128];  
  
int read_buffer(int index) {  
    if (index < 128)  
        return buffer[index];  
    return ERROR;  
}
```

What is wrong with this code?

Buffer underrun!

Since C has been used for more than 30 years resulting in a large base of legacy code that is still being used in present day (new) products.

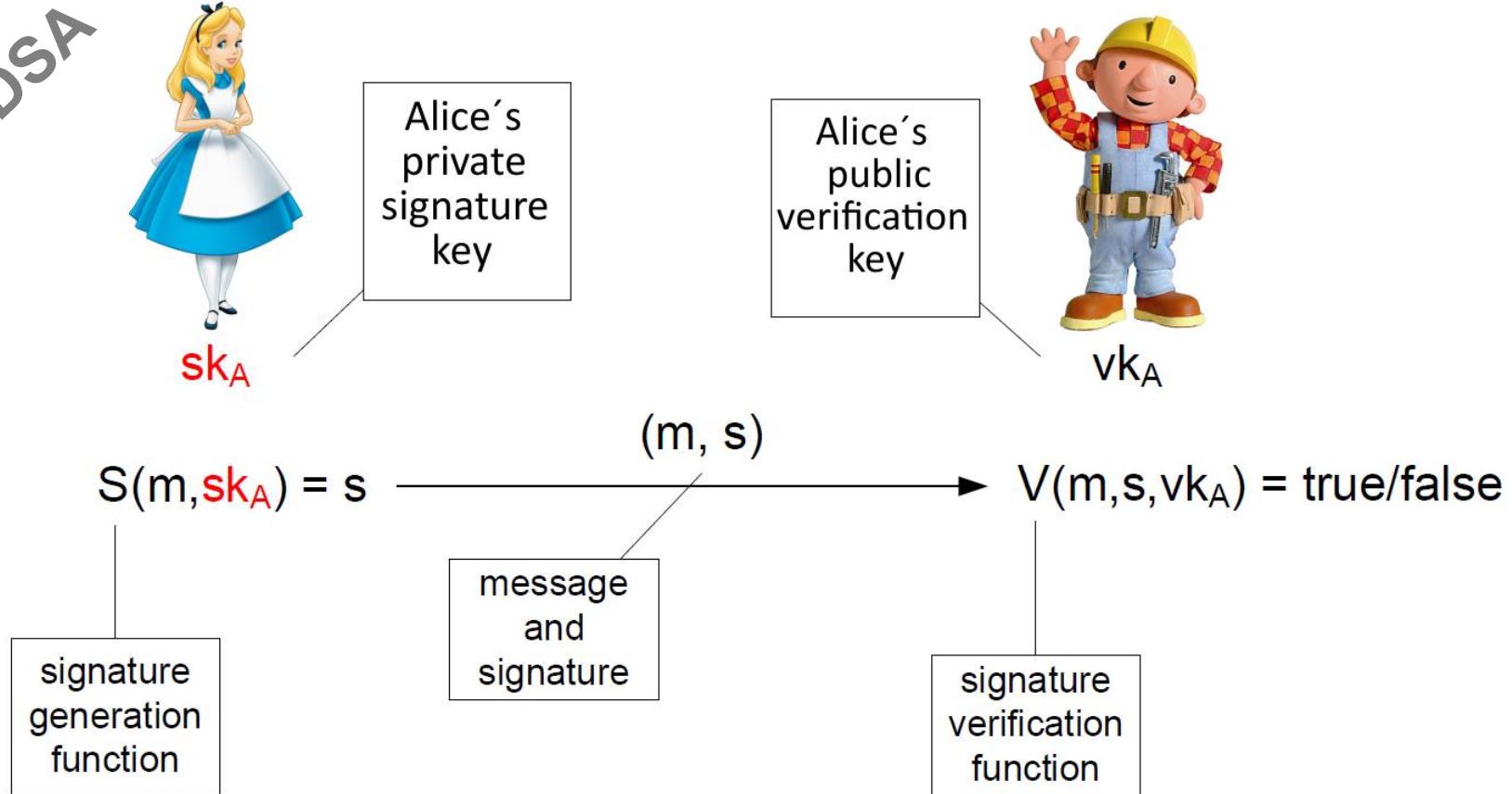
Much of the legacy code dates back from even before the C language standardization.

Legacy code requires significantly more effort to secure than more recent code due to :

- Coding style
- Lack of security knowledge during implementation
- Loose compiler standards at the time of implementation

ANSI-C offers by default little to no security measures

ECDSA



High level: The protocol → the basics

ECDSA

Signature generation

```
Def  $(r, s) = \text{sign}(m) \{$ 
  Repeat {
    Repeat {
      Select random  $k \in [1, \dots n - 1]$ 
      Compute  $k \cdot P = (x, y)$ 
      Compute  $r = x \bmod n$ 
    } until ( $r \neq 0$ )
    Compute  $e = \mathcal{H}(m)$ 
    Compute  $s = k^{-1}(e + dr) \bmod n$ 
  } until ( $s \neq 0$ )
  Return  $(r, s)$ 
}
```

ECDSA

Signature generation

```
Def  $(r, s) = \text{sign}(m) \{$   
  Repeat {  
    Repeat {  
      Select random  $k \in [1, \dots, n - 1]$   
      Compute  $k \cdot P = (x, y)$   
      Compute  $r = x \bmod n$   
    } until ( $r \neq 0$ )  
    Compute  $e = \mathcal{H}(m)$   
    Compute  $s = k^{-1}(e + dr) \bmod n$   
  } until ( $s \neq 0$ )  
  Return  $(r, s)$   
}
```

Signature verification

```
Def {accept, reject} =  $\text{verify}(r, s) \{$   
  If ( $r < 0$  or  $r \geq n$  or  $s < 0$  or  $s \geq n$ ) return reject  
  Compute  $e = \mathcal{H}(m)$   
  Compute  $w = s^{-1} \bmod n$   
  Compute  $u_1 = ew \bmod n$  and  $u_2 = rw \bmod n$   
  Compute  $X = u_1 \cdot P + u_2 \cdot Q = (x, y)$   
  If ( $X == \mathcal{O}$ ) return reject  
  If ( $x \bmod n \neq r$ ) return reject  
  Return accept  
}
```

ECDSA

Signature generation

```
Def  $(r, s) = \text{sign}(m)$  {  
    Repeat {  
        Repeat {  
            Select random  $k \in [1, \dots, n - 1]$   
            Compute  $k \cdot P = (x, y)$   
            Compute  $r = x \bmod n$   
        } until ( $r \neq 0$ )  
        Compute  $e = \mathcal{H}(m)$   
        Compute  $s = k^{-1}(e + dr) \bmod n$   
    } until ( $s \neq 0$ )  
    Return  $(r, s)$   
}
```

$$s = k^{-1}(e + dr) \rightarrow k \equiv s^{-1}e + s^{-1}dr \equiv we + wrd \equiv u_1 + u_2 d \pmod{n}$$

Signature verification

```
Def {accept, reject} =  $\text{verify}(r, s)$  {  
    If ( $r < 0$  or  $r \geq n$  or  $s < 0$  or  $s \geq n$ ) return reject  
    Compute  $e = \mathcal{H}(m)$   
    Compute  $w = s^{-1} \bmod n$   
    Compute  $u_1 = ew \bmod n$  and  $u_2 = rw \bmod n$   
    Compute  $X = u_1 \cdot P + u_2 \cdot Q = (x, y)$   
    If ( $X == \mathcal{O}$ ) return reject  
    If ( $x \bmod n \neq r$ ) return reject  
    Return accept  
}
```


ECDSA

Signature generation

```
Def  $(r, s) = \text{sign}(m) \{$   
  Repeat {  
    Repeat {  
      Select random  $k \in [1, \dots, n - 1]$   
      Compute  $k \cdot P = (x, y)$   
      Compute  $r = x \bmod n$   
    } until ( $r \neq 0$ )  
    Compute  $e = \mathcal{H}(m)$   
    Compute  $s = k^{-1}(e + dr) \bmod n$   
  } until ( $s \neq 0$ )  
  Return  $(r, s)$   
}
```

Signature verification

```
Def {accept, reject} =  $\text{verify}(r, s) \{$   
  If ( $r < 0$  or  $r \geq n$  or  $s < 0$  or  $s \geq n$ ) return reject  
  Compute  $e = \mathcal{H}(m)$   
  Compute  $w = s^{-1} \bmod n$   
  Compute  $u_1 = ew \bmod n$  and  $u_2 = rw \bmod n$   
  Compute  $X = u_1 \cdot P + u_2 \cdot Q = (x, y)$   
  If ( $X == \mathcal{O}$ ) return reject  
  If ( $x \bmod n \neq r$ ) return reject  
  Return accept  
}
```

$$s = k^{-1}(e + dr) \rightarrow \textcolor{red}{k} \equiv s^{-1}e + s^{-1}dr \equiv we + wrd \equiv \textcolor{blue}{u_1} + \textcolor{blue}{u_2}d \pmod{n}$$
$$X = u_1P + u_2Q = (\textcolor{blue}{u_1} + \textcolor{blue}{u_2}d)P = \textcolor{red}{k}P \rightarrow x \bmod n = r$$

ECDSA – Security 101

The value r has **the same security requirements** as the private key d

Using the same random $k \rightarrow kP = (x, y) \rightarrow r = x \bmod n$ is also the same

Sign(m_1) = (r, s_1)	Sign(m_2) = (r, s_2)

ECDSA – Security 101

The value r has **the same security requirements** as the private key d

Using the same random $k \rightarrow kP = (x, y) \rightarrow r = x \bmod n$ is also the same	
$\text{Sign}(m_1) = (r, s_1)$	$\text{Sign}(m_2) = (r, s_2)$
$e_1 = \mathcal{H}(m_1)$	$e_2 = \mathcal{H}(m_2)$
$s_1 = k^{-1}(e_1 + d \cdot r) \bmod n$	$s_2 = k^{-1}(e_2 + d \cdot r) \bmod n$

ECDSA – Security 101

The value r has **the same security requirements** as the private key d

Using the same random $k \rightarrow kP = (x, y) \rightarrow r = x \bmod n$ is also the same	
$\text{Sign}(m_1) = (r, s_1)$	$\text{Sign}(m_2) = (r, s_2)$
$e_1 = \mathcal{H}(m_1)$	$e_2 = \mathcal{H}(m_2)$
$s_1 = k^{-1}(e_1 + d \cdot r) \bmod n$	$s_2 = k^{-1}(e_2 + d \cdot r) \bmod n$
$k \cdot s_1 = e_1 + d \cdot r \bmod n$	$k \cdot s_2 = e_2 + d \cdot r \bmod n$
$k \cdot (s_1 - s_2) \equiv e_1 - e_2 \bmod n \rightarrow k \equiv (e_1 - e_2) \cdot (s_1 - s_2)^{-1} \bmod n$	

We can compute k

ECDSA – Security 101

The value r has **the same security requirements** as the private key d

Using the same random $k \rightarrow kP = (x, y) \rightarrow r = x \bmod n$ is also the same	
$\text{Sign}(m_1) = (r, s_1)$	$\text{Sign}(m_2) = (r, s_2)$
$e_1 = \mathcal{H}(m_1)$	$e_2 = \mathcal{H}(m_2)$
$s_1 = k^{-1}(e_1 + d \cdot r) \bmod n$	$s_2 = k^{-1}(e_2 + d \cdot r) \bmod n$
$k \cdot s_1 = e_1 + d \cdot r \bmod n$	$k \cdot s_2 = e_2 + d \cdot r \bmod n$
$k \cdot (s_1 - s_2) \equiv e_1 - e_2 \bmod n \rightarrow k \equiv (e_1 - e_2) \cdot (s_1 - s_2)^{-1} \bmod n$	
$s = k^{-1}(e_1 + d \cdot r) \rightarrow d = r^{-1}(k \cdot s - e_1) \bmod n$	

We can compute k , which allows us to compute the secret key d

ECDSA – Security 101

Nobody would hard-code this random value k right?

ECDSA – Security 101

Nobody would hard-code this random value k right?

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
              // guaranteed to be random.
}
```

Terrible example

Used in 2010 to get the private key from Sony's video game console PlayStation 3.

The per-message random value k was hard-coded.

Fast Scalar Multiplications

COMPANY INTERNAL

SECURE CONNECTIONS
FOR A SMARTER WORLD

Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

Input: $G \in E(\mathbb{F}_p)$ and $\mathbb{Z} \ni s = \sum_{i=0}^{k-1} s_i \cdot 2^i$

Output: $s \cdot G \in E(\mathbb{F}_p)$

```

1.   $P \leftarrow G$ 
2.  for ( $i = k - 2$ ;  $i \geq 0$ ;  $i--$ ) {
3.     $P \leftarrow 2 \cdot P$                                 (double)
4.    if ( $s_i == 1$ )  $P \leftarrow P + G$                 (add)
5.  }
6.  Return  $P$ 

```

Many (!) optimizations possible.

Assume the scalar and point are random.

Example – Double-and-Add

$$9997_{10} = 10011100001101_2$$

Naïve double-add algorithm: 13D + 6A

$$D^3 \rightarrow A \rightarrow D \rightarrow A \rightarrow D \rightarrow A \rightarrow D^5 \rightarrow A \rightarrow D \rightarrow A \rightarrow D^2 \rightarrow A$$
$$((((((2^3 + 2^0) \cdot 2^1 + 2^0) \cdot 2^1 + 2^0) \cdot 2^5 + 2^0) \cdot 2^1 + 2^0) \cdot 2^2 + 2^0 = 9997$$

1	1001110000
1000	10011100001
1001	100111000010
10010	100111000011
10011	10011100001100
100110	10011100001101
100111	

Example – Windowing

$$9997_{10} = 10011100001101_2$$

Windowing algorithm (13D + 5A)

Precompute cP with $1 \leq c < 2^w$

Assume $w = 2$, compute window: $\{P, 2P, 3P\}$ (1D + 1A)

$$((((2 \cdot 2^2 + 1) \cdot 2^2 + 3) \cdot 2^2 + 0) \cdot 2^2 + 0) \cdot 2^2 + 3) \cdot 2^2 + 1 = 9997$$

10	100110000
1000	100110000000
1001	10011000011
100100	1001100001100
100111	1001100001101
10011100	

Example – Sliding window

$$9997_{10} = 10011100001101_2$$

Sliding windowing algorithm (13D + 5A)

Precompute **odd** cP with $1 \leq c < 2^w$

Assume $w = 2$, compute window: $\{P, 3P\}$ (1D + 1A)

$$(((2^4 + 3) \cdot 2 + 1) \cdot 2^6 + 3) \cdot 2^2 + 1 = 9997$$

1	1001110000
100	100111000000
10000	100111000011
10011	10011100001100
100110	10011100001101
100111	

Example – Signed sliding window

$$9997_{10} = 10011100001101_2$$

Signed sliding windowing algorithm (14D + 5A)

Precompute **odd** cP with $1 \leq c < 2^w$

Assume $w = 2$, compute window: $\{P, 3P\}$ (1D + 1A)

Exploit that computing negation is efficient: $-P = -(x, y) = (x, -y)$

$$(((2^2 + 1) \cdot 2^3 - 1) \cdot 2^4 + 1) \cdot 2^4 - 3 = 9997$$

1	1001110000
100	1001110001
101	10011100010000
101000	10011100001101
100111	

Are these approaches secure?

- Double-and-Add
- Windowing
- Sliding windowing
- Signed sliding windowing

Are these approaches secure?

Adding \mathcal{O} ?	
Double-and-Add	✓
Windowing	✓
Sliding windowing	✗
Signed sliding windowing	✗

Are these approaches secure?

	Adding \mathcal{O} ?	Multiple precomputed points?
Double-and-Add	✓	✗
Windowing	✓	✓
Sliding windowing	✗	✓
Signed sliding windowing	✗	✓

Are these approaches secure?

	Adding \mathcal{O} ?	Multiple precomputed points?	Constant-time?
Double-and-Add	✓	✗	✗
Windowing	✓	✓	✗
Sliding windowing	✗	✓	✗
Signed sliding windowing	✗	✓	✗

Constant-time?

Run-time is independent of the key and input to the algorithm

Implementation Attacks: Overview

Side-Channels
Power Consumption
Electromagnetic Emanation
Timing
Communication (Errors)
Heat Emanation

SCA-Attacks

Simple Power Analysis
Differential Power Analysis
Template Attacks
Timing Analysis

Non Invasive Attacks

Cryptographically
Secure Algorithm

Secret

Implementation

Misuse logical
implementation flaws

Logical Attacks

Fault Injection

Laser Beam
Power- Clock Glitches
Probes
EM Pulses
Focused Ion Beam
Environmental Stress

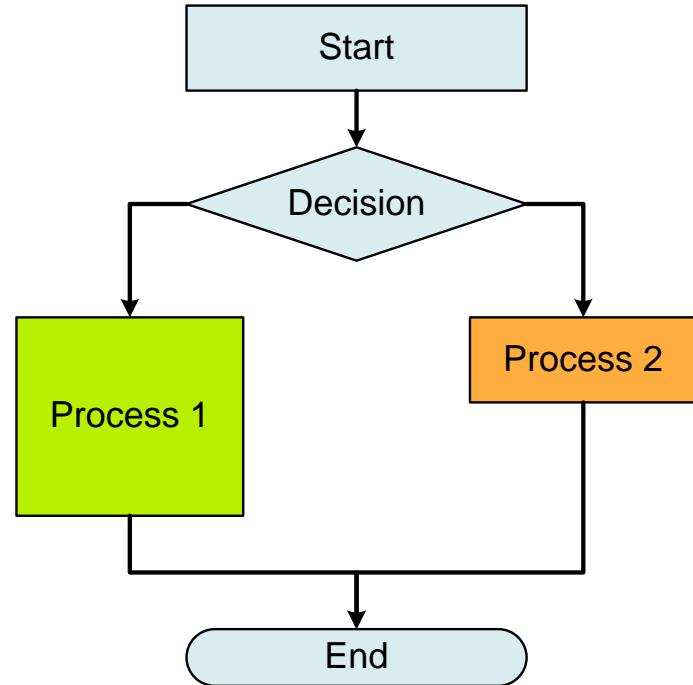
Fault Attacks

Attacks on Algorithm
Attacks on Program Flow
Single Bit vs. Multiple Bit
Differential Fault Attacks

Semi- / Invasive Attacks

Timing Attacks

- Deduce information about the secret by measuring runtime of program
→ example of (passive) side-channel attack
Can be performed local or remote
- Many things can influence the timing of the implementation → very hard to create truly constant-time implementations

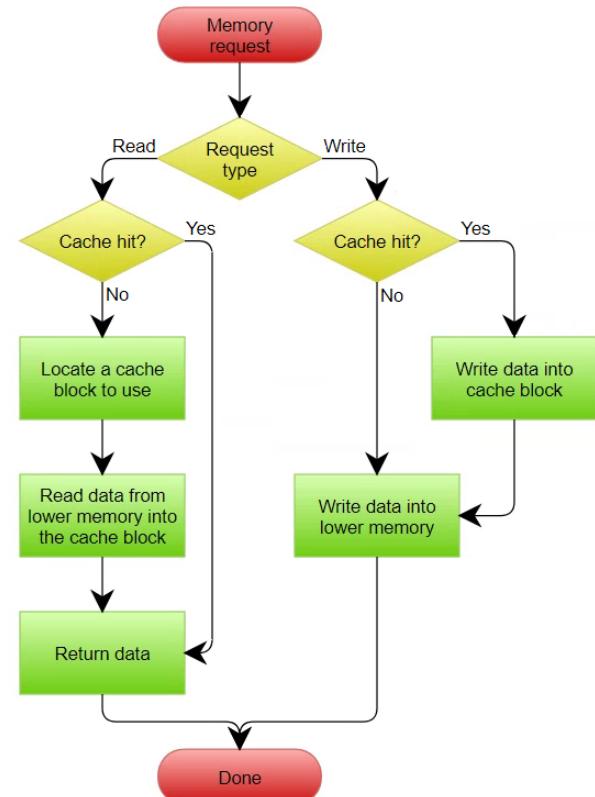


Constant-time?

Run-time is independent of the key and input to the algorithm

Timing attacks: Cache attack

- Remote timing attacks
(especially successful against public-key crypto)
- Local cache attacks (multi-user system)

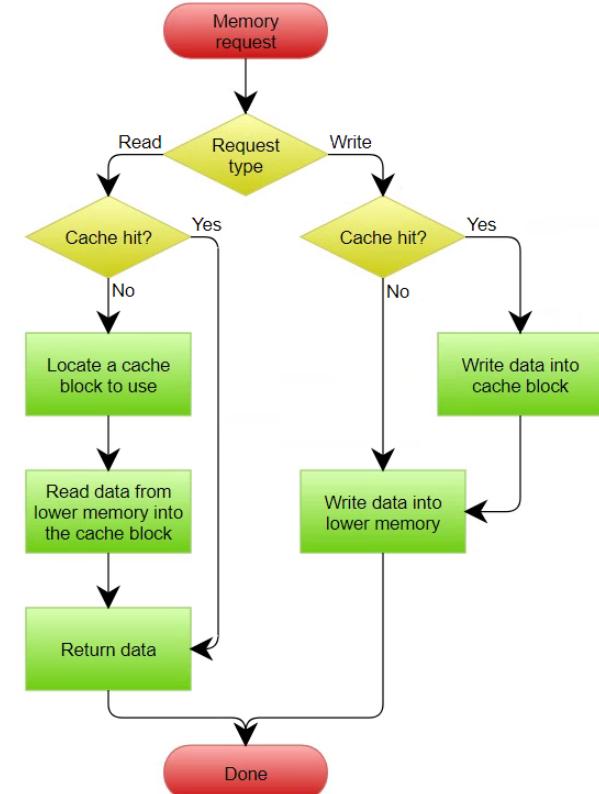


Constant-time?
Run-time is independent of the key and input to the algorithm

Timing attacks: Cache attack

- Remote timing attacks
(especially successful against public-key crypto)
- Local cache attacks (multi-user system)

Example: FLUSH+RELOAD attack exploits a security weakness in the X86 architecture: monitor access to memory lines in shared pages



Constant-time?
Run-time is independent of the key and input to the algorithm

Wikipedia:
A write-through cache with no-write allocation

New developments in ECC and impact in practice

Elliptic Curve Models - Summary

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form
- [+] Prime order possible
- [-] Exceptions in group law
- NIST and
Brainpool curves

Elliptic Curve Models - Summary

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form
- [+] Prime order possible
- [-] Exceptions in group law
- NIST and Brainpool curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of curves
- [-] Not prime order
- [+] Montgomery ladder

Elliptic Curve Models - Summary

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form
- [+] Prime order possible
- [-] Exceptions in group law
- NIST and Brainpool curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of curves
- [-] Not prime order
- [+] Montgomery ladder



Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of curves
- [-] Not prime order
- [+] Fastest arithmetic
- [+] Some have complete group law

Elliptic Curve Models - Summary

Weierstrass curves

$$y^2 = x^3 + ax + b$$

- Most general form
- [+] Prime order possible
- [-] Exceptions in group law
- NIST and Brainpool curves

Montgomery curves

$$By^2 = x^3 + Ax^2 + x$$

- Subset of curves
- [-] Not prime order
- [+] Montgomery ladder

Twisted Edwards curves

$$ax^2 + y^2 = 1 + dx^2y^2$$

- Subset of curves
- [-] Not prime order
- [+] Fastest arithmetic
- [+] Some have complete group law

Montgomery ladder

- ✓ **Montgomery curves** and **Montgomery ladder** were invented to accelerate ECM.
- ✓ Regular structure
- ✓ Montgomery ladder very efficient in combination with Montgomery curve
- ✓ Small memory requirement

Algorithm 4 Montgomery ladder

Input: $\left\{ \begin{array}{l} G \in E_{a,b}(\mathbf{F}_p) \\ n = \sum_{i=0}^{k-1} n_i 2^i, n \in \mathbf{Z}_{>0}, 2^{k-1} \leq n < 2^k \end{array} \right.$

Output: $P = nG \in E_{a,b}(\mathbf{F}_p)$

1. $P \leftarrow G, Q \leftarrow G$
2. **for** $i = k - 2$ down to 0 **do**
3. **if** $n_i = 1$ **then**
4. $(P, Q) \leftarrow (P + Q, 2Q)$
5. **else**
6. $(P, Q) \leftarrow (2P, P + Q)$

Montgomery ladder

- ✓ **Montgomery curves** and **Montgomery ladder** were invented to accelerate ECM.
- ✓ Regular structure
- ✓ Montgomery ladder very efficient in combination with Montgomery curve
- ✓ Small memory requirement
- ✓ Can be converted in constant-time with “constant-time swapping” depending on n_i

Algorithm 4 Montgomery ladder

Input: $\left\{ \begin{array}{l} G \in E_{a,b}(\mathbf{F}_p) \\ n = \sum_{i=0}^{k-1} n_i 2^i, n \in \mathbf{Z}_{>0}, 2^{k-1} \leq n < 2^k \end{array} \right.$

Output: $P = nG \in E_{a,b}(\mathbf{F}_p)$

1. $P \leftarrow G, Q \leftarrow G$
2. **for** $i = k - 2$ down to 0 **do**
3. **if** $n_i = 1$ **then**
4. $(P, Q) \leftarrow (P + Q, 2Q)$
5. **else**
6. $(P, Q) \leftarrow (2P, P + Q)$

Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve

$$y^2 = x^3 + 486662x^2 + x$$

Fast ECDH →

Montgomery ladder

Curve	Double	Add
Montgomery		11
$a = -3$ short Weierstrass	9	14

1987: Montgomery curve
2005: New ECDH speed records using
Curve25519 (Montgomery curve)

Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve

$$y^2 = x^3 + 486662x^2 + x$$

Twisted Edwards curve

$$-x^2 + y^2 = 1 - \frac{121665}{121666} x^2 y^2$$

Fast ECDH →

Montgomery ladder

Fast ECDSA →

twisted Edwards arithmetic

Curve	Double	Add
Montgomery		11
$a = -1$ twisted Edwards	7	8
$a = -3$ short Weierstrass	9	14

1987: Montgomery curve

2005: New ECDH speed records using Curve25519 (Montgomery curve)

2008: $a = -1$ twisted Edwards curve

2011: EdDSA → new digital signature speed records

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve
“One curve model to rule them all”

- Implement group law, counter measures etc. once.
- If new curves are proposed no need to change implementation.

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve
“One curve model to rule them all”

- Implement group law, counter measures etc. once.
- If new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume

- prime order [almost always assumed]
- short Weierstrass curves [always assumed]
- with curve parameter $a = -3$ [not widely assumed?]

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve
“One curve model to rule them all”

- Implement group law, counter measures etc. once.
- If new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume

- prime order [almost always assumed]
- short Weierstrass curves [always assumed]
- with curve parameter $a = -3$ [not widely assumed?]

Historically this makes sense:

Standard curves $E(\mathbf{F}_p)$ with $p > 3$ prime have these three properties

For instance see:

- NIST, FIPS 186-4, App. D: Recommended Elliptic Curves for Government Use
- SEC 2: Recommended Elliptic Curve Domain Parameters*

(* Except the three Koblitz curves secp192k1, secp224k1, secp256k1, where $a = 0$)

Practice - Backwards compatibility

Existing hardware / software implementations might assume

- prime order [almost always assumed]
 - ❖ This rules out (twisted) Edwards / Montgomery curves
 - ❖ Need additional code to avoid small-subgroup attacks
- short Weierstrass curves [always assumed]
One curve model to rule them all: not a problem
- with curve parameter $a = -3$ [not widely assumed?]

Practice - Backwards compatibility

Existing hardware / software implementations might assume

- prime order [almost always assumed]
 - ❖ This rules out (twisted) Edwards / Montgomery curves
 - ❖ Need additional code to avoid small-subgroup attacks
- short Weierstrass curves [always assumed]
One curve model to rule them all: not a problem
- with curve parameter $a = -3$ [not widely assumed?]

One can transform

$$y^2 = x^3 + ax + b \quad \text{to an isomorphic} \quad y^2 = x^3 - 3x + b'$$

if and only if there exists $u \in \mathbf{F}_p^*$ such that $u^4 = a/-3$ and $u^6 = b/b'$

Zero value / low-torsion attacks

These new curve models have an efficient complete group law.

Any disadvantages?

Zero value / low-torsion attacks

These new curve models have an efficient complete group law.

Any disadvantages?

Idea, focus on points with a zero coordinate

- zero-coordinate (Goubin's attack)
- zero-value [Akishita, Takagi]

Weierstrass	Twisted Edwards
$(x, 0)$, point of order 2	$(0, 1)$, 1-torsion
$(0, \pm\sqrt{b})$	$(0, -1)$, 2-torsion
	$(\pm\sqrt{a^{-1}}, 0)$, 4-torsion

Zero value / low-torsion attacks

These new curve models have an efficient complete group law.

Any disadvantages?

Idea, focus on points with a zero coordinate

- zero-coordinate (Goubin's attack)
- zero-value [Akishita, Takagi]

Weierstrass	Twisted Edwards
$(x, 0)$, point of order 2	$(0, 1)$, 1-torsion
$(0, \pm\sqrt{b})$	$(0, -1)$, 2-torsion
	$(\pm\sqrt{a^{-1}}, 0)$, 4-torsion

- Weierstrass: $(x, 0)$ does not exist when using prime order curves.
- $a = -1$ twisted Edwards: 4-torsion exists

Is this a problem for software implementations?

Zero value / low-torsion attacks

Is this a problem for software implementations?

Yes

Weierstrass	Twisted Edwards
$(x, 0)$, point of order 2	$(0, 1)$, 1-torsion
$(0, \pm\sqrt{b})$	$(0, -1)$, 2-torsion
	$(\pm\sqrt{a^{-1}}, 0)$, 4-torsion

- Flush-and-reload + 4-torsion + modular reduction code
→ attack possible, torsion points make things more complicated!
- See ECC Workshop on Monday for more details
May the Fourth Be With You: A Microarchitectural Side Channel Attack on Several Real-World Applications of Curve25519
By Daniel Genkin

Example: EdDSA

Algorithm 1 ECDSA signature generation of a message m with the secret key d .

```
function ECDSA_SIGN( $m, d$ )
   $e = \mathcal{H}(m)$ 
  repeat
    repeat
      Select  $u \in [1, n - 1]$  uniform random
       $(x, y) = uG \in E_b(\mathbb{F}_p)$ 
       $r = x \bmod n$ 
    until  $r \neq 0$ 
     $s = u^{-1}(e + dr) \bmod n$ 
  until  $s \neq 0$ 
  return  $(r, s)$ 
```

Example: EdDSA

Algorithm 1 ECDSA signature generation of a message m with the secret key d .

```
function ECDSA_SIGN( $m, d$ )
   $e = \mathcal{H}(m)$ 
  repeat
    repeat
      Select  $u \in [1, n - 1]$  uniform random
       $(x, y) = uC \in F_x(\mathbb{F}_p)$ 
       $r = x \bmod n$ 
    until  $r \neq 0$ 
     $s = u^{-1}(e + dr) \bmod n$ 
  until  $s \neq 0$ 
  return  $(r, s)$ 
```

On many platforms sampling “good” random data is

- non-trivial
- insufficient entropy is available

Predictable nonce \rightarrow extraction of private key

Example: EdDSA

Algorithm 1 ECDSA signature generation of a message m with the secret key d .

```
function ECDSA_SIGN( $m, d$ )
   $e = \mathcal{H}(m)$ 
  repeat
    repeat
      Select  $u \in [1, n - 1]$  uniform random
       $(x, y) = uC \in E_{\mathbb{F}_p}$ 
       $r = x \bmod n$ 
    until  $r \neq 0$ 
     $s = u^{-1}(e + dr) \bmod n$ 
  until  $s \neq 0$ 
  return  $(r, s)$ 
```

Algorithm 2 EdDSA signature generation of a message m with the secret key k .

```
function EDDSA_SIGN( $(m, k)$ )
   $m' = \mathcal{H}_1(m)$ 
  Retrieve or compute  $(h_b, \dots, h_{2b-1})$  from  $\mathcal{H}_2(k) = (h_0, h_1, \dots, h_{2b-1})$ 
   $r = \mathcal{H}_2(h_b, \dots, h_{2b-1}, m') \bmod \ell$ 
   $R = rB \in E_{a,d}(\mathbb{F}_q)$ 
   $t = \mathcal{H}_2(\text{ENC}_{\text{POINT}}(R), \text{ENC}_{\text{POINT}}(A), m')$ 
   $S = (r + ts) \bmod \ell$ 
  return  $(\text{ENC}_{\text{POINT}}(R), \text{ENC}_{\text{INT}}(S))$ 
```

- Edwards-curve Digital Signature Algorithm (EdDSA)
 - Variant of a Schnorr signature
 - Deterministic signature

Example: EdDSA

Algorithm 1 ECDSA signature generation of a message m with the secret key d .

```
function ECDSA_SIGN( $m, d$ )
   $e = \mathcal{H}(m)$ 
  repeat
    repeat
      Select  $u \in [1, n - 1]$  uniform random
       $(x, y) = uC \in E_a(\mathbb{F}_p)$ 
       $r = x \bmod n$ 
    until  $r \neq 0$ 
     $s = u^{-1}(e + dr) \bmod n$ 
  until  $s \neq 0$ 
  return  $(r, s)$ 
```

Algorithm 2 EdDSA signature generation of a message m with the secret key k .

```
function EDDSA_SIGN( $(m, k)$ )
   $m' = \mathcal{H}_1(m)$ 
  Retrieve or compute  $(h_b, \dots, h_{2b-1})$  from  $\mathcal{H}_2(k) = (h_0, h_1, \dots, h_{2b-1})$ 
   $r = \mathcal{H}_2(h_b, \dots, h_{2b-1}, m') \bmod \ell$ 
   $R = rB \in E_{a,a}(\mathbb{F}_q)$ 
   $t = \mathcal{H}_2(\text{ENC}_{\text{POINT}}(R), \text{ENC}_{\text{POINT}}(A), m')$ 
   $S = (r + ts) \bmod \ell$ 
  return  $(\text{ENC}_{\text{POINT}}(R), \text{ENC}_{\text{INT}}(S))$ 
```

- Public key is point A ($= sB$)
- Secret key is k , where $s = 2^n + \sum_{c \leq i < n} 2^i h_i$ and $\mathcal{H}(k) = (h_0, h_1, \dots, h_{2b-1})$
- Solves the getting “good” RNG problem, always better?

Differential Fault Analysis

The next level: moving from **passive** to **active** attacks

Fault attack

- Clock glitches
 - Temporal overclocking
- Voltage spikes
 - Temporal switch to higher (or lower) voltages
- Optical fault injection

Differential Fault Analysis

The next level: moving from **passive** to **active** attacks

Fault attack

- Clock glitches
 - Temporal overclocking
- Voltage spikes
 - Temporal switch to higher (or lower) voltages
- Optical fault injection

Controlled or uncontrolled fault

Controlled fault → inject a fault in a **target memory range**.

For instance, flipping a bit in a byte, word or any range.

Differential Fault Analysis

The next level: moving from **passive** to **active** attacks

Fault attack

- Clock glitches
 - Temporal overclocking
- Voltage spikes
 - Temporal switch to higher (or lower) voltages
- Optical fault injection

Controlled or uncontrolled fault

Controlled fault → inject a fault in a **target memory range**.

For instance, flipping a bit in a byte, word or any range.

DFA: use the difference between a faulty and a correct result to determine information about the secret key used

Example: EdDSA

- Most time-consuming operation is the elliptic curve scalar multiplication.
- Introduce a fault during the operation
→ Change the outcome of the operation

Algorithm 2 EdDSA signature generation of a message m with the secret key k .

```
function EdDSA_SIGN((m, k))
   $m' = \mathcal{H}_1(m)$ 
  Retrieve or compute  $(h_b, \dots, h_{2b-1})$  from  $\mathcal{H}_2(k) = (h_0, h_1, \dots, h_{2b-1})$ 
   $r = \mathcal{H}_2(h_b, \dots, h_{2b-1}, m') \bmod \ell$ 
   $R = rB \in E_{a,d}(\mathbb{F}_q)$ 
   $t = \mathcal{H}_2(\text{ENC}_{\text{POINT}}(R), \text{ENC}_{\text{POINT}}(A), m')$ 
   $S = (r + ts) \bmod \ell$ 
  return  $(\text{ENC}_{\text{POINT}}(R), \text{ENC}_{\text{INT}}(S))$ 
```

Example: EdDSA

- Most time-consuming operation is the elliptic curve scalar multiplication.
- Introduce a fault during the operation
→ Change the outcome of the operation

$$(R, S) = (rB, r + ts \bmod \ell)$$

$$(R', S') = (r'B, r + t's \bmod \ell)$$

$$t' = \mathcal{H}_2(\text{ENC}_{\text{POINT}}(R'), \text{ENC}_{\text{POINT}}(A), m')$$

Algorithm 2 EdDSA signature generation of a message m with the secret key k .

```
function EdDSA_SIGN((m, k))
    m' = H1(m)
    Retrieve or compute (hb, ..., h2b-1) from H2(k) = (h0, h1, ..., h2b-1)
    r = H2(hb, ..., h2b-1, m') mod ℓ
    R = rB ∈ Ea,d(Fq)
    t = H2(ENCPOINT(R), ENCPOINT(A), m')
    S = (r + ts) mod ℓ
    return (ENCPOINT(R), ENCINT(S))
```

Example: EdDSA

- Most time-consuming operation is the elliptic curve scalar multiplication.
- Introduce a fault during the operation
→ Change the outcome of the operation

$$(R, S) = (rB, r + ts \bmod \ell)$$

$$(R', S') = (r'B, r + t's \bmod \ell)$$

$$t' = \mathcal{H}_2(\text{ENC}_{\text{POINT}}(R'), \text{ENC}_{\text{POINT}}(A), m')$$

Algorithm 2 EdDSA signature generation of a message m with the secret key k .

```
function EdDSA_SIGN((m, k))
    m' = H1(m)
    Retrieve or compute (hb, ..., h2b-1) from H2(k) = (h0, h1, ..., h2b-1)
    r = H2(hb, ..., h2b-1, m') mod ℓ
    R = rB ∈ Ea,d(Fq)
    t = H2(ENCPOINT(R), ENCPOINT(A), m')
    S = (r + ts) mod ℓ
    return (ENCPOINT(R), ENCINT(S))
```

DFA approach

$$S - S' \equiv s(t - t') \bmod \ell$$

→ One equation with one unknown
→ compute s and check if correct using $A = sB$

Example: EdDSA

Table 1. Overview of the different proposed attacks against EdDSA which result in extracting the private key s .

where	attack	type	number of faults
Import point B	fault	uncontrolled	≥ 1
Import point A	fault	controlled	≥ 1
Hash computation of r	fault	controlled	≥ 1
Hash computation of r with fixed (unknown) output	{ fault	uncontrolled	≥ 1 }
Scalar multiplication rB	fault	uncontrolled	≥ 1
Hash computation of t	fault	controlled	≥ 1
Hash computation of t with fixed (unknown) output	{ fault	controlled	≥ 2 }
Computation of S	fault	controlled	≥ 1
Hash computation of r	DPA/DEMA	—	—

Example: Deterministic ECDSA

Table 2. Overview of the different possible attacks against deterministic ECDSA which result in extracting the private key d .

where	attack	type	number of faults
Import point G	fault	uncontrolled	≥ 1
Hash computation of u	fault	controlled	≥ 1
Hash computation of u with fixed (unknown) output	{ fault	uncontrolled	≥ 1 }
Scalar multiplication uG	fault	uncontrolled	≥ 1
Computation of s	fault	controlled	≥ 1
Generation of u	DPA/DEMA	—	—

Potential countermeasures

- In general: DFA countermeasures are expensive.
 - Compute twice and compare

Potential countermeasures

- In general: DFA countermeasures are expensive.
 - Compute twice and compare
- What about a hybrid approach? Use either

$$r = \mathcal{H}(h_b, \dots, h_{2b-1}, m') \text{ or } r = \mathcal{H}(R, h_b, \dots, h_{2b-1}, m')$$

Where R is high-quality randomness.

Potential countermeasures

- In general: DFA countermeasures are expensive.
 - Compute twice and compare
- What about a hybrid approach? Use either

$$r = \mathcal{H}(h_b, \dots, h_{2b-1}, m') \text{ or } r = \mathcal{H}(R, h_b, \dots, h_{2b-1}, m')$$

Where R is high-quality randomness.

Advantages

- ✓ Improved protection on platforms where DFA is a threat
- ✓ No change to
 - ✓ Implementations which are not concerned with DFA
 - ✓ Key generation and signature verification algorithms

However, no longer a deterministic signature scheme.

Conclusions

- Implementing elliptic curve crypto is fun,
 - Creating fast / small implementations is a nice challenge
New developments in ECC (Curve25519) are **fast but not backwards compatible**.
 - Creating a “secure” implementation is **very hard**
- What does secure mean?
 - Timing attacks? Cache attacks?
 - Other passive attacks? (e.g. power)
 - Active attacks → fault injections?
- A lot of opportunity for things to go wrong in practice
 - Protocol level
 - Algorithm level
 - Implementation level

This is what makes this field so much fun!

SECURE CONNECTIONS
FOR A SMARTER WORLD