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Elliptic Curves

What is an elliptic curve? Amfol gesdel fedoien) pfesods plesos
Not an ellipse! NI

Mathematical perspective

Smooth, projective algebraic curve of genus one which together
with a point “at infinity” forms an abelian variety

Practical perspective
When defined over a large prime field an elliptic curve simply is

E/Fyy*=x*+ax+b suchthat 4a®+27b* # 0

Engineering perspective
An “algorithm” which needs to be implemented in a “secure” way
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Goal of this Lecture

Creating ECC implementations is easy
« Play around with Sage, Magma
 Evenin C this is trivial
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Goal of this Lecture

Creating ECC implementations is easy
« Play around with Sage, Magma
 Evenin C this is trivial

Creating efficient (performance / memory / binary size) ECC
Implementations is a challenge

Creating efficient and secure ECC implementations is hard
» Define “secure”?

Goal.

Show some examples how different settings of “secure” have an impact
on ECC software design in practice.

- Common mistakes made Iin practice. } [
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ECC in Practice
Security 101
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Elliptic Curves in Hardware and Software in Practice

( )
We see an increase in support for ECC in software, for example

= 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”
= Around 5 million hosts support ECC in TLS / SSH

" Many TLS servers prefer ciphersuites with ECDHE




Elliptic Curves in Hardware and Software in Practice

We see an increase in support for ECC in software, for example

» 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”
= Around 5 million hosts support ECC in TLS / SSH

= Many TLS servers prefer ciphersuites with ECDHE

Hardware ECC
v" Currently, ECC coprocessors are used
v in billions of smart cards securing ID cards, passports and banking
v' for 15 years in devices supporting the Digital Transmission Content Protection system

(Short-term) future: Internet-of-Things, prediction
v" 5 billion things at the end of 2015
v" 25 billion things around 2020

« For asymmetric crypto, ECC is the logical choice: small keys, fast on embedded platforms, etc
+ Many “things” need to communicate securely with user-apps and possibly the world wide web
+ Hardware and software implementation will start to talk to each other (more frequently)!
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ECC Keys

Domain parameters

(p,a,b,G,n,h)

* p € Z prime number which defines I,
* a,b€eF,definey*=x>+ax+b
 G=(x,y)€ E([Fp)

 n € Z prime order of G

* h € Zco-factor, h = #E(IF,) /n
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ECC Keys

Domain parameters Private key: d € Z/nZ
Publickey: P =d -G € E(F,)

(p,a,b,G,n,h)

* p € Z prime number which defines I,
* a,b€eF,definey*=x>+ax+b
 G=(x,y)€ E([Fp)

 n € Z prime order of G

* h € Zco-factor, h = #E(IF,) /n
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ECC Keys

Domain parameters

(p,a,b,G,n,h)

* p € Z prime number which defines I,
* a,b€eF,definey*=x>+ax+b
 G=(x,y)€ E([Fp)

« n € Z prime order of G Curve P-192
* h € Zco-factor, h = #E(IF,) /n Curve P-224
These domain parameters are Curve P-256
publicly available through Curve P-384
named identifiers Curve P-521

Private key: d € Z/nZ
Publickey: P =d -G € E(F,)

secpl9z2rl
secp224rl
secp256rl
secp384rl
secp521rl

primel92vl

prime256v1

primel92vl
secp224rl
prime256v1
secp384rl
secp521rl

y
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Programming 101

Low level: The implementation - the basics

static int buffer[128];

int read_buffer(int index) {
if (index < 128)
return buffer[index];
return ERROR;

}

What is wrong with this code?
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Programming 101

Low level: The implementation - the basics

static int buffer[128];

int read_buffer(int index) {
if (index < 128)
return buffer[index];
return ERROR;

}

What is wrong with this code?

Buffer underrun!
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Programming 101

static int buffer[128];
int read_buffer(int index) {
if (index < 128)

return buffer[index];
return ERROR;

}

What is wrong with this code?

Buffer underrun!

18.

Since C has been used for more than 30 years
resulting in a large base of legacy code that is still
being used in present day (new) products.

Much of the legacy code dates back from even
before the C language standardization.

Legacy code requires significantly more effort to
secure than more recent code due to :

» Coding style

* Lack of security knowledge during implementation
» Loose compiler standards at the time of
implementation

ANSI-C offers by default little to no security
measures

(™|
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Alice’s Alice’s
private public
signature verification
key key
ci.
SkA
(m, s)
S(m,ska) = s
message
and
signature signature signature
generation verification
function function

High level: The protocol - the basics

» \/(m,s,vka) = true/false




ECDSA

Signature generation

Def (r,s) = sign(m) {
Repeat {
Repeat {
Selectrandom k € [1,...n — 1]
Compute k- P = (x,y)
Compute r = x mod n
}until (r = 0)
Compute e = H(m)
Compute s = k~1(e + dr) mod n
}until (s = 0)
Return (r, s)

}
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ECDSA

Signature generation Signature verification
Def (r,s) = sign(m) { Def {accept,reject} = verify(r, s) {
Repeat { If (r < 0orr>nors<0ors = n)return reject
Repeat { Compute e = H(m)
Selectrandom k € [1,..n — 1] Compute w = s"! modn
Compute k- P = (x,y) Compute u; = ew modn and u, = rw mod n
Compute r = x mod n Compute X =u; -P+u,-Q =(x,y)
}until (r # 0) If (X == O) return reject
Compute e = H(m) If (x mod n # r) return reject
Compute s = k™1(e + dr) mod n Return accept
}until (s # 0) }
Return (r, s)
}
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ECDSA

Signature generation

Def (r,s) = sign(m) {
Repeat {
Repeat {
Selectrandom k € [1,...n — 1]
Compute k- P = (x,y)
Compute r = x mod n
}until (r = 0)
Compute e = H(m)
Compute s = k= *(e + dr) mod n
}until (s = 0)
Return (r, s)

}

Signature verification

Def {accept,reject} = verify(r, s) {
If (r < 0orr>nors<0ors = n)return reject
Compute e = H'(m)
Compute w = s ' modn
Compute 1; = ew modn and u, = rw mod n
Compute X =u;-P+u,-Q = (x,5)
If (X == O) return reject
If (x mod n # r) return reject
Return accept

s=kle+dr) nk=ste+stdr=we+wrd =u, +u,d (modn)
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ECDSA

Signature generation Signature verification
Def (r,s) = sign(m) { Def {accept,reject} = verify(r, s) {
Repeat { If (r < 0orr>nors<0ors = n)return reject
Repeat { Compute e = H(m)
Selectrandom k € [1,..n — 1] Compute w = s"! modn
Compute k- P = (x,y) Compute u; = ew modn and u, = rw mod n
Compute r = x mod n Compute X =u; -P+u,-Q =(x,y)
}until (r # 0) If (X == O) return reject
Compute e = H(m) If (x mod n # r) return reject
Compute s = k™1(e + dr) mod n Return accept
}until (s # 0) }
Return (r, s)
}

s=kle+dr) nk=ste+stdr=we+wrd =u, +u,d (modn)
X=uP+u,Q =(u+u,d)P =kP - xmodn=r

(™|
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ECDSA — Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) » r = x mod n is also the same

Sign(my) = (r,51)

Sign(m,) = (1, ;)
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ECDSA — Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) » r = x mod n is also the same

Sign(m,) = (r,51)

Sign(m,) = (1, ;)

e, = H(my)

e, = H(my)

s, =k (e, +d-r)modn

s, =k (e, +d-r) modn
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ECDSA - Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) - r = x mod n is also the same

Sign(my) = (r,51) Sign(m,) = (1, ;)
e; = H(my) e; = H(my)
s, =k (e, +d-r)modn s, =k (e, +d-r)modn
k-s; =e;+d-rmodn k-s, =e;+d-rmodn

k-(s;—s))=e —e;,modn - k=(e;—ey)-(s;—5,) T modn

We can compute k
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ECDSA - Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) - r = x mod n is also the same

Sign(m,) = (r,s1) Sign(m,) = (1, 52)
e; = H(my) e; = H(my)
s, =k (e, +d-r)modn s, =k (e, +d-r)modn
k-s; =e;+d-rmodn k-s, =e,+d-rmodn

k-(s;—s))=e —e;,modn - k=(e;—ey)-(s;—5,) T modn

s=kl(e;+d-r) - d=r"Yk-s—e;)modn

We can compute k, which allows us to compute the secret key d

(™|
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ECDSA - Security 101

Nobody would hard-code this random value k right?
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ECDSA - Security 101

Nobody would hard-code this random value k right?

int getRandomNumber ()

return 4. // chosen by fair dice roll.
J/ Quaranteed to be random.

Terrible example

Used in 2010 to get the private key from Sony’s
video game console PlayStation 3.
The per-message random value k was hard-coded.

A 4
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Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

flnput: G €E(F,) and Z3s = kols; - 28 N
Output: s+ G € E(IF,)

l. P«<G

2. for(i=k—-2;i =20;i--){

3. P<2:-P (double)
4, if(s;==1)P <P+ (add)

5. }

\6. Return P Y
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Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

flnput: G €E(F,) and Z3s =

Output: s - G € E(F,)

P<G

for(i=k—-2;i 20;i--){
P<2-P

if(s; ==1)P<P+G

}

Return P

(oo s wN P

k-1

i
i—o Si* 2

(double)
(add)

~N

Many (!) optimizations possible.

Assume the scalar and point are
random.

(™|
i |



Example — Double-and-Add
999710 = 100111000011015

Naive double-add algorithm: 13D + 6A

D? +A—-D—3A—-D—-3A—-D>3A3D— A
(2% +20) -2 4 20) . 21 4 20) . 25 4 20) . 21 4 20) . 22

1 10011100000
1000 10011100001
1001 100111000010
10010 100111000011
10011 10011100001100
100110 10011100001101
100111

(™|
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Example — Windowing
999710 = 100111000011015

Windowing algorithm (13D + 5A)
Precompute cP with 1 < ¢ < 2%
Assume w = 2, compute window: {P,2P,3P} (1D + 1A)

((((2-2°+1)-22+3)-2°+0)-27+0) - 2° +3) - 2 + 1 = 9997

10 1001110000

1000 100111000000

1001 100111000011

100100 10011100001100

100111 10011100001101

10011100 Y
A\




Example — Sliding window
999710 = 100111000011015

Sliding windowing algorithm (13D + 5A)
Precompute odd cP with1 < ¢ < 2%
Assume w = 2, compute window: {P,3P} (1D + 1A)

(2*+3)-2+1)-264+3).224+1=9997

1 1001110000

100 100111000000
10000 100111000011
10011 10011100001100
100110 10011100001101
100111
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Example — Signed sliding window

999710 = 10011100001101>

Signed sliding windowing algorithm (14D + 5A)

Precompute odd cP with1 < ¢ < 2%

Assume w = 2, compute window: {P,3P} (1D + 1A)

Exploit that computing negation is efficient: —P = —(x,y) = (x, —y)

((22+1)-2°2—-1)-2*+1)-2* -3

1 1001110000

100 1001110001

101 10011100010000
101000 10011100001101
100111

(™|
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Are these approaches secure?

Windowing

Signed sliding windowing

37.



Are these approaches secure?

Adding O0?

Windowing v
Signed sliding windowing x

38.



Are these approaches secure?

39.

Multiple
Adding O0? precomputed

points?

Windowing v v
Signed sliding windowing x v




Are these approaches secure?

Multiple
Adding 0? precomputed
points?

Constant-
time?

Windowing v v x
Signed sliding windowing x v x

Constant-time?
Run-time is independent of the key and input to the algorithm

40.



Implementation Attacks: Overview

Side-Channels

Power Consumption
Electromagnetic Emanation
Timing Secret
Communication (Errors)
Heat Emanation

d

SCA-Attacks

Simple Power Analysis
Differential Power Analysis
Template Attacks

Timing Analysis

Non Invasive
Attacks

Implementation

J
Misuse logical
Implementation flaws

Logical Attacks

41.

Environmental Stress

Fault Injection
Laser Beam
Power- Clock Glitches
Probes

EM Pulses

Focused lon Beam

Fault Attacks

Attacks on Algorithm
Attacks on Program Flow
Single Bit vs. Multiple Bit
Differential Fault Attacks

Semi-/ Invasive
Attacks

4\



Timing Attacks

Deduce information about the secret by
measuring runtime of program

- example of (passive) side-channel attack
Can be performed local or remote

Many things can influence the timing of the
Implementation - very hard to create truly
constant-time implementations

Start

\ 4 \ 4

Process 2

Process 1

{ Constant-time?

Run-time is independent of the key and input to the aIgorithmJ ¢




Timing attacks: Cache attack ?

Read - Request . Wiite

Remote timing attacks <= <

(especially successful against public-key crypto) \T
Local cache attacks (multi-user system) -- -

Wikipedia:
A write-through cache with no-write allocation



Timing attacks: Cache attack +

Read

Request

Write

Remote timing attacks —_— d -
(especially successful against public-key crypto) ‘L > Tv
Local cache attacks (multi-user system) Locste acache Wi data it
block to use cache block
Example: FLUSH+RELOAD attack exploits a security v J
weakness in the X86 architecture: monitor access to overmermny i wite dela no
memory lines in shared pages ‘L
Return data f
(
§ I A
Constant-time? Wikipedia:
Run-time is independent of the key and input to the algorithm Awrite-through casSgiiity no-write allocation
\ ¥ 4
4\
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Elliptic Curve Models - Summary

Weierstrass curves
y2=x3+ax+b

 Most general form
* [+] Prime order possible
« [-] Exceptions in group law

« NIST and
Brainpool curves
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Elliptic Curve Models - Summary

Weierstrass curves Montgomery curves
y?=x*+ax+b By? =x3 + Ax? 4+ x
 Most general form * Subset of curves

* [+] Prime order possible * [-] Not prime order
* [-] Exceptions in group law « [+] Montgomery ladder

« NIST and
Brainpool curves




Elliptic Curve Models - Summary

Weierstrass curves Montgomery curves Twisted Edwards
y2=x34+ax+b By? =x3 4+ Ax? +x curves

ax? +y% =1+ dx?y?

* Most general form

Subset of curves

 [+] Prime order possible  « [-] Not prime order * Subset of curves
* [-] Exceptions in group law « [+] Montgomery ladder * [-] Not prime order
« NIST and » [+] Fastest arithmetic
Brainpool curves . [+] Some
have
complete
group law




Elliptic Curve Models - Summary

Weierstrass curves
y2=x3+ax+b

 Most general form .
* [+] Prime order possible .
« [-] Exceptions in group law e

« NIST and
Brainpool curves

Montgomery curves

By® = x3 + Ax* + x

Twisted Edwards
curves

ax? +y? =1+ dx?y?

Subset of curves < Tm—)

[-] Not prime order
[+] Montgomery ladder

Subset of curves
[-] Not prime order
[+] Fastest arithmetic

[+] Some
have

complete
group law




Montgomery ladder

v Montgomery curves and

Montgomery ladder were Algorithm 4 Montgomery ladder
invented to accelerate ECM. G € E,y(F,)
| , =1
v' Regular structure Input: n=>3Y ni2',n€Zso 251 <n<2
1=0
v' Montgomery ladder very Output: P =nG € Eqp(Fp)
efficient in combination with L PG Q<G
3. if n; =1 then
v Small memory requirement 4. (P,Q) + (P+Q.,2Q)
5  else
6. (P,Q) « (2P, P + Q)

| ™|
|



Montgomery ladder

v Montgomery curves and

Montgomery ladder were Algorithm 4 Montgomery ladder

iInvented to accelerate ECM. G e Ea o(F )
v' Regular structure Input: n = Z ni2tn € Zwg, 2"t <n < 2k
v' Montgomery ladder very Output: P = nG € Eap(Fp)

efficient in combination with L PG QR+G

Montgomery curve 2. for i =k — 2 down to 0 do
if n, =1 then

v Small memory requirement ‘Q (P +Q,2Q)

v" Can be converted in constant- 6- (2P, P + Q)
time with “constant-time v
swapping” depending on n; 4\



Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve
y? = x3 4+ 486662x% + x

Fast ECDH >
Montgomery ladder

1987: Montgomery curve
2005: New ECDH speed records using

Montgomery 11 Curve25519 (Montgomery curve)

a = —3 short Weierstrass 9 14



Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve ﬁ Twisted Edwards curve
y? = x3 + 486662x% + x 121665 ,

2 42 =1
Y =1 1666 Y
Fast ECDH -> Fast ECDSA -
Montgomery ladder twisted Edwards arithmetic

1987: Montgomery curve
2005: New ECDH speed records using

Montgomery 11 Curve25519 (Montgomery curve)

a = —1 twisted Edwards 7 8 2008 a=-—1 tW|Sted Edwal‘dS curve
_ 2011: EADSA - new digital signature

a = —3 short Weierstrass 9 14 speed records

A ¥ 4
4\



Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.
Given a curve in another curve model one can always translate this to an equivalent Welerstrass curve
“One curve model to rule them all”

= Implement group law, counter measures etc. once.
» |f new curves are proposed no need to change implementation.

-
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» |f new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume

* prime order [ almost always assumed ]
* short Weierstrass curves [ always assumed ]
* with curve parametera = -3 [ not widely assumed? ]
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Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.
Given a curve in another curve model one can always translate this to an equivalent Welerstrass curve
“One curve model to rule them all”

= Implement group law, counter measures etc. once.
» |f new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume

* prime order [ almost always assumed ]
* short Weierstrass curves [ always assumed ]
* with curve parametera = -3 [ not widely assumed? ]

Historically this makes sense:

Standard curves E (F,) with p>3 prime have these three properties

For instance see:

o NIST, FIPS 186-4, App. D: Recommended Elliptic Curves for Government Use

o SEC 2: Recommended Elliptic Curve Domain Parameters*

(* Except the three Koblitz curves secpl192k1, secp224kl, secp256k1, where a = 0) g



Practice - Backwards compatibility

Existing hardware / software implementations might assume
« prime order [ almost always assumed ]

+ This rules out (twisted) Edwards / Montgomery curves
+ Need additional code to avoid small-subgroup attacks

» short Weierstrass curves [ always assumed ]
One curve model to rule them all: not a problem

« with curve parametera = -3 [ not widely assumed? ]
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Practice - Backwards compatibility

Existing hardware / software implementations might assume
« prime order [ almost always assumed ]

¢ This rules out (twisted) Edwards / Montgomery curves
+ Need additional code to avoid small-subgroup attacks

» short Weierstrass curves [ always assumed ]
One curve model to rule them all: not a problem

« with curve parametera = -3 [ not widely assumed? ]
One can transform
y2=x3+ax+b to an isomorphic y2=x3-3x+b

if and only if there exists u € F; such that u* = a/—3 and u® = b/b’

-
2 |



Zero value / low-torsion attacks

These new curve models have an efficient complete group law.
Any disadvantages?

-
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Zero value / low-torsion attacks

These new curve models have an efficient complete group law.
Any disadvantages?

Idea, focus on points with a zero

coordinate (x,0), point of order 2 (0,1), 1-torsion

« zero-coordinate (Goubin’s attack) (0, +Vb) (0,—1), 2-torsion

« Zzero-value [Akishita, Takagi] (Va1 0), A-torsion

-
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Zero value / low-torsion attacks

These new curve models have an efficient complete group law.
Any disadvantages?

Idea, focus on points with a zero

coordinate (x,0), point of order 2 (0,1), 1-torsion
« zero-coordinate (Goubin’s attack) (0, +Vb) (0,—1), 2-torsion
« Zzero-value [Akishita, Takagi] (Va1 0), A-torsion

« Welerstrass: (x, 0) does not exist when using prime order curves.
* a = —1 twisted Edwards: 4-torsion exists

Is this a problem for software implementations?



Zero value / low-torsion attacks

Is this a problem for software implementations?
Yes

(x,0), point of order 2  (0,1), 1-torsion
(0, +Vb) (0,—1), 2-torsion
(+Va~1,0), 4-torsion

* Flush-and-reload + 4-torsion + modular reduction code
—> attack possible, torsion points make things more complicated!

« See ECC Workshop on Monday for more details
May the Fourth Be With You: A Microarchitectural Side Channel
Attack on Several Real-World Applications of Curve25519
By Daniel Genkin ¥



Example: EdDSA

Algorithm 1 ECDSA signature generation
of a message m with the secret key d.

function ECDSA _siGN(m, d)
e =H(m)
repeat
repeat
Select v € [1,n — 1] uniform random
(r,9) = uG € By(F,)
r=zxmodn
until r #£ 0
s=u"'(e+dr) modn
until s # 0

return (r,s)

63.
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Example: EdDSA

Algorithm 1 ECDSA signature generation
of a message m with the secret key d.
function ECDSA _siGN(m, d)
e =H(m)

repeat

repe
Select u € [1,n — 1] uniform@
I; = wﬂ = F, (Wr\

r=xmodn
until r #£ 0
s=u"'(e+dr) modn
until s # 0

return (r,s)

On many platforms sampling “good” random data is
* non-trivial

 insufficient entropy is available

Predictable nonce - extraction of private key

64.

(™|
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Example: EdDSA

Algorithm 1 ECDSA signature generation Algorithm 2 EADSA signature generation of a mes-

of a message m with the secret key d. sage m with the secret key k.
function ECDSA _siaN(m, d) function EDDSA _ stan((m, k))
e = H(m) m' = H, (m)
repeat Retrieve or compute (hp,...,hop—1) from Ha(k) =

repe (h(],hl,-- . 5h’2b—1)
Select w € [1,n — 1] uniform@ r = Ha(hp, ..., hap—1,m') mod ¢
z )7wf‘c F‘.(TFP\

R=rBc E,q4(F,)

7: = x mod n t=""H> (ENCPOINT(R)1 ENCPOIN'T(A)= m’)
until » £ 0 S = (r+ts) mod/
s=u"'(e+dr) modn return (ENCponr(R), ENC:(5))
until s £ 0

return (r,s)

« Edwards-curve Digital Signature Algorithm (EdDSA)
« Variant of a Schnorr signature
« Deterministic signature
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Example: EdDSA

Algorithm 1 ECDSA signature generation Algorithm 2 EADSA signature generation of a mes-

of a message m with the secret key d. sage m with the secret key k.
function ECDSA _siaN(m, d) function EpDSA _stan((m, k))
e ="H(m) m’ = Hi(m)
repeat Retrieve or compute (hy,...,hop—1) from Ha(k) =
repe (hg 1755 1)
@E (1,n—1] umform@ r— 71’.2(  hap_1,m") mod £
, = o F (W h| Eu,u(wﬁrj
r=xmodn t = Hz ENCPOINT(R)1 ENCPOIN'T(A)1 m’)
until » £ 0 S = (r+ts) mod/
s =u""'(e+dr) mod n return (ENCponr(R), ENC:(5))
until s £ 0

return (r,s)

* Public key is point A (= sB)
 Secretkey is k, where s = 2"+ Y __;_, 2th; and H (k) = (hg, hq, ..., hyp—_1)

« Solves the getting “good” RNG problem, always better?
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Differential Fault Analysis
The next level: moving from passive to active attacks

Fault attack
« Clock glitches
« Temporal overclocking
» Voltage spikes
« Temporal switch to higher
(or lower) voltages
« Optical fault injection
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Differential Fault Analysis
The next level: moving from passive to active attacks

FaU|It atktafl{k ) 4 Controlled or uncontrolled fault A
* Clock glitches _ Controlled fault = inject a fault in a
« Temporal overclocking

_ target memory range.
- Voltage spikes For instance, flipping a bit in a byte,

« Temporal switch to higher e GF B EEE
(or lower) voltages 2 y range. /

« Optical fault injection

(™|
|
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Differential Fault Analysis
The next level: moving from passive to active attacks

Fault attac_k 4 Controlled or uncontrolled fault A
» Clock glitches _ Controlled fault © inject a fault in a
. Tempc_)ral overclocking target memory range.
* Voltage spikes _ For instance, flipping a bit in a byte,
« Temporal switch to higher word or any range.
(or lower) voltages C )
« Optical fault injection
DFA: use the difference between a faulty and a correct result to
determine information about the secret key used
A ¥ 4

69. 4\



Example: EdDSA

« Most time-consuming operation is the
elliptic curve scalar multiplication.

* Introduce a fault during the operation

- Change the outcome of the operation

70.

Algorithm 2 EdDSA signature generation of a mes-
sage m with the secret key k.
function EpDSA  sianN((m, k))
m' = Hi(m)
Retrieve or compute (hy
Ul-(}._ 1‘11 ..... h‘2b—l}
r = Holhy, ..., hop_1,m’) mod £
R=r1B € E,4(F,)
L= H'Z(ENCPOINT(R:}! ENCPOJ.\:T(A}:?TIF)
S = (r+ts) mod ¢
return (ENCponr(R), ENC1r(S))

..... h-gb_l} from Hz(!’i) =
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Example: EdDSA

« Most time-consuming operation is the
elliptic curve scalar multiplication.

* Introduce a fault during the operation

- Change the outcome of the operation

(R, S)
(R, S)

(rB,r +ts mod /)

= (r'B,r +t's mod /)

Algorithm 2 EdDSA signature generation of a mes-
sage m with the secret key k.
function EpDSA  sianN((m, k))
m' = Hi(m)
Retrieve or compute (hy,..., hap—1) from Ha(k) =
Ul-(}._ 1‘11 ..... h‘2b—l}
r = Holhu .. hop_1,m’) mod £
q= rB e E;;_;I(ED
t = Ha(ENCpomr (1), ENCPOJNT(‘dL?TIF)
S = (r+ts) mod ¢
return (ENcCponr(R), ENCr(S))

t = %Q(ENCPDINT(RF)E ENCPGINT(A):' mf)
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EX am p | =N Ed DSA Algorithm 2 EdDSA signature generation of a mes-

sage m with the secret key k.
function EDDSA _sian((m, k))

. M(_)st. time-consuming oper_atiqn IS the ;L;e?f;(fﬂ compute (hy, ... hap_1) from Ha(k) =
elliptic curve scalar multiplication. (ho, b, - ., hav-1)

r = Holhueo. . hop_1,m') mod ¢

t = Ha(ENCpomr (R): ENCPOINT(A)'J m’}
S = (r+ts) mod £

return (ENCpor(R), ENCr(S))

* Introduce a fault during the operation
- Change the outcome of the operation

(R,S) = (rB,r +ts mod /)
(R',S") = ('"B,r +t's mod /)
t' = Ha(ENCponr(R'), ENCpoyr(4), m')

DFA approach
S—S"=s(t—t')mod?

- One equation with one unknown
72. —> compute s and check if correct using A = sB




Example: EdDSA

Table 1. Overview of the different proposed attacks against EADSA which result in extracting the private key s.

where attack type number of faults
Import point B fault uncontrolled >1
Import point A fault controlled > 1
Hash computation of r fault controlled >1
Hash computation of r
with fixed (unknown) output { fault  uncontrolled 21 }
Scalar multiplication r B fault uncontrolled >1
Hash computation of ¢ fault controlled >1
Hash computation of ¢

>
with fixed (unknown) output { fault controlled =2 }
Computation of S fault controlled >1
Hash computation of r DPA/DEMA — -

(™|
i |
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Example: Deterministic ECDSA

Table 2. Overview of the different possible attacks against deterministic ECDSA which result in extracting the
private key d.

where attack type number of faults
Import point G fault uncontrolled >1
Hash computation of u fault controlled >1
Hash computation of u

>
with fixed (unknown) output { faule  uheontroled 21 }
Scalar multiplication uGG fault uncontrolled >1
Computation of s fault controlled > 1
Generation of u DPA /DEMA — -

)



Potential countermeasures

In general: DFA countermeasures are expensive.
« Compute twice and compare
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Potential countermeasures

In general: DFA countermeasures are expensive.
« Compute twice and compare

What about a hybrid approach? Use either
r = }[(hb' ver th—l' m,) orr = :]'[(R, h’b' ver ) th_l,m')

Where R is high-quality randomness.
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Potential countermeasures

In general: DFA countermeasures are expensive.
« Compute twice and compare

What about a hybrid approach? Use either
r = f]’[(hb, very th_l, m') orr = }[(R, hb, veny th_l, m')
Where R is high-quality randomness.
Advantages

v" Improved protection on platforms where DFA is a threat
v" No change to

v" Implementations which are not concerned with DFA
v' Key generation and signature verification algorithms
However, no longer a deterministic signature scheme.

7.



Conclusions

Implementing elliptic curve crypto is fun,
» Creating fast / small implementations is a nice challenge
New developments in ECC (Curve25519) are fast but not backwards compatible.
» Creating a “secure” implementation is very hard

What does secure mean?
« Timing attacks? Cache attacks?
« Other passive attacks? (e.g. power)
« Active attacks - fault injections?

A lot of opportunity for things to go wrong in practice
* Protocol level
« Algorithm level
« Implementation level

This is what makes this field so much fun!
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SECURE CONNECTIONS
FOR A SMARTER WORLD



