
Software Engineering Aspects

of Elliptic Curve Cryptography

Joppe W. Bos

Real World Crypto 2017

1.

NXP Semiconductors

2.

Operations in > 35 countries, more than 130 facilities

≈ 45,000 employees

Research & Development

≈ 11,200 engineers in 23 countries

What is an elliptic curve?

Elliptic Curves

Not an ellipse!

What is an elliptic curve?

Elliptic Curves

Not an ellipse!

Mathematical perspective

Smooth, projective algebraic curve of genus one which together

with a point “at infinity” forms an abelian variety

What is an elliptic curve?

Elliptic Curves

Not an ellipse!

Mathematical perspective

Smooth, projective algebraic curve of genus one which together

with a point “at infinity” forms an abelian variety

Practical perspective

When defined over a large prime field an elliptic curve simply is

𝐸/𝔽𝑝: 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏 such that 4𝑎3 + 27𝑏2 ≠ 0

What is an elliptic curve?

Elliptic Curves

Not an ellipse!

Mathematical perspective

Smooth, projective algebraic curve of genus one which together

with a point “at infinity” forms an abelian variety

Practical perspective

When defined over a large prime field an elliptic curve simply is

𝐸/𝔽𝑝: 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏 such that 4𝑎3 + 27𝑏2 ≠ 0

Engineering perspective

An “algorithm” which needs to be implemented in a “secure” way

• Creating ECC implementations is easy
• Play around with Sage, Magma

• Even in C this is trivial

Goal of this Lecture

7.

• Creating ECC implementations is easy
• Play around with Sage, Magma

• Even in C this is trivial

• Creating efficient (performance / memory / binary size) ECC

implementations is a challenge

Goal of this Lecture

8.

• Creating ECC implementations is easy
• Play around with Sage, Magma

• Even in C this is trivial

• Creating efficient (performance / memory / binary size) ECC

implementations is a challenge

• Creating efficient and secure ECC implementations is hard
• Define “secure”?

Goal.

• Show some examples how different settings of “secure” have an impact

on ECC software design in practice.

• Common mistakes made in practice.

Goal of this Lecture

9.

ECC in Practice

Security 101

COMPANY INTERNAL

We see an increase in support for ECC in software, for example

▪ 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”

▪ Around 5 million hosts support ECC in TLS / SSH

▪ Many TLS servers prefer ciphersuites with ECDHE

Elliptic Curves in Hardware and Software in Practice

We see an increase in support for ECC in software, for example

▪ 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”

▪ Around 5 million hosts support ECC in TLS / SSH

▪ Many TLS servers prefer ciphersuites with ECDHE

Hardware ECC

✓ Currently, ECC coprocessors are used

✓ in billions of smart cards securing ID cards, passports and banking

✓ for 15 years in devices supporting the Digital Transmission Content Protection system

(Short-term) future: Internet-of-Things, prediction

✓ 5 billion things at the end of 2015

✓ 25 billion things around 2020

• For asymmetric crypto, ECC is the logical choice: small keys, fast on embedded platforms, etc

• Many “things” need to communicate securely with user-apps and possibly the world wide web

• Hardware and software implementation will start to talk to each other (more frequently)!

Elliptic Curves in Hardware and Software in Practice

ECC Keys

Domain parameters

𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ

• 𝑝 ∈ ℤ prime number which defines 𝔽𝑝
• 𝑎, 𝑏 ∈ 𝔽𝑝 define 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• 𝐺 = (𝑥, 𝑦) ∈ 𝐸(𝔽𝑝)

• 𝑛 ∈ ℤ prime order of 𝐺
• ℎ ∈ ℤ co-factor, h = #𝐸(𝔽𝑝)/𝑛

ECC Keys

Domain parameters

𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ

• 𝑝 ∈ ℤ prime number which defines 𝔽𝑝
• 𝑎, 𝑏 ∈ 𝔽𝑝 define 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• 𝐺 = (𝑥, 𝑦) ∈ 𝐸(𝔽𝑝)

• 𝑛 ∈ ℤ prime order of 𝐺
• ℎ ∈ ℤ co-factor, h = #𝐸(𝔽𝑝)/𝑛

Private key: 𝑑 ∈ ℤ/𝑛ℤ
Public key: 𝑃 = 𝑑 ∙ 𝐺 ∈ 𝐸(𝔽𝑝)

ECC Keys

Domain parameters

𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ

• 𝑝 ∈ ℤ prime number which defines 𝔽𝑝
• 𝑎, 𝑏 ∈ 𝔽𝑝 define 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• 𝐺 = (𝑥, 𝑦) ∈ 𝐸(𝔽𝑝)

• 𝑛 ∈ ℤ prime order of 𝐺
• ℎ ∈ ℤ co-factor, h = #𝐸(𝔽𝑝)/𝑛

These domain parameters are

publicly available through

named identifiers

NIST SEC ANSI X9.62 OpenSSL

Curve P-192 secp192r1 prime192v1 prime192v1

Curve P-224 secp224r1 secp224r1

Curve P-256 secp256r1 prime256v1 prime256v1

Curve P-384 secp384r1 secp384r1

Curve P-521 secp521r1 secp521r1

Private key: 𝑑 ∈ ℤ/𝑛ℤ
Public key: 𝑃 = 𝑑 ∙ 𝐺 ∈ 𝐸(𝔽𝑝)

Programming 101

16.

static int buffer[128];

int read_buffer(int index) {
if (index < 128)
return buffer[index];

return ERROR;
}

What is wrong with this code?

Low level: The implementation  the basics

Programming 101

17.

static int buffer[128];

int read_buffer(int index) {
if (index < 128)
return buffer[index];

return ERROR;
}

What is wrong with this code?

Low level: The implementation  the basics

Buffer underrun!

Programming 101

18.

static int buffer[128];

int read_buffer(int index) {
if (index < 128)
return buffer[index];

return ERROR;
}

What is wrong with this code?

Buffer underrun!

Since C has been used for more than 30 years

resulting in a large base of legacy code that is still

being used in present day (new) products.

Much of the legacy code dates back from even

before the C language standardization.

Legacy code requires significantly more effort to

secure than more recent code due to :

• Coding style

• Lack of security knowledge during implementation

• Loose compiler standards at the time of

implementation

ANSI-C offers by default little to no security

measures

High level: The protocol  the basics

Def 𝑟, 𝑠 = sign 𝑚 {
Repeat {

Repeat {

Select random 𝑘 ∈ [1,… 𝑛 − 1]
Compute 𝑘 ∙ 𝑃 = (𝑥, 𝑦)
Compute 𝑟 = 𝑥 mod 𝑛

} until (𝑟 ≠ 0)

Compute 𝑒 = ℋ(𝑚)
Compute 𝑠 = 𝑘−1 𝑒 + 𝑑𝑟 mod 𝑛

} until (𝑠 ≠ 0)

Return 𝑟, 𝑠
}

ECDSA

Signature generation

Def 𝑟, 𝑠 = sign 𝑚 {
Repeat {

Repeat {

Select random 𝑘 ∈ [1,… 𝑛 − 1]
Compute 𝑘 ∙ 𝑃 = (𝑥, 𝑦)
Compute 𝑟 = 𝑥 mod 𝑛

} until (𝑟 ≠ 0)

Compute 𝑒 = ℋ(𝑚)
Compute 𝑠 = 𝑘−1 𝑒 + 𝑑𝑟 mod 𝑛

} until (𝑠 ≠ 0)

Return 𝑟, 𝑠
}

Def {accept,reject} = verify 𝑟, 𝑠 {
If (𝑟 < 0 or 𝑟 ≥ 𝑛 or s < 0 or s ≥ 𝑛) return reject

Compute 𝑒 = ℋ(𝑚)
Compute 𝑤 = 𝑠−1 mod 𝑛
Compute 𝑢1 = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑟𝑤 mod 𝑛
Compute 𝑋 = 𝑢1 ∙ 𝑃 + 𝑢2 ∙ 𝑄 = (𝑥, 𝑦)
If (𝑋 == 𝒪) return reject

If (𝑥 mod 𝑛 ≠ 𝑟) return reject

Return accept

}

ECDSA

Signature generation Signature verification

Def 𝑟, 𝑠 = sign 𝑚 {
Repeat {

Repeat {

Select random 𝑘 ∈ [1,… 𝑛 − 1]
Compute 𝑘 ∙ 𝑃 = (𝑥, 𝑦)
Compute 𝑟 = 𝑥 mod 𝑛

} until (𝑟 ≠ 0)

Compute 𝑒 = ℋ(𝑚)
Compute 𝑠 = 𝑘−1 𝑒 + 𝑑𝑟 mod 𝑛

} until (𝑠 ≠ 0)

Return 𝑟, 𝑠
}

Def {accept,reject} = verify 𝑟, 𝑠 {
If (𝑟 < 0 or 𝑟 ≥ 𝑛 or s < 0 or s ≥ 𝑛) return reject

Compute 𝑒 = ℋ(𝑚)
Compute 𝑤 = 𝑠−1 mod 𝑛
Compute 𝑢1 = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑟𝑤 mod 𝑛
Compute 𝑋 = 𝑢1 ∙ 𝑃 + 𝑢2 ∙ 𝑄 = (𝑥, 𝑦)
If (𝑋 == 𝒪) return reject

If (𝑥 mod 𝑛 ≠ 𝑟) return reject

Return accept

}

ECDSA

𝑠 = 𝑘−1 𝑒 + 𝑑𝑟 → 𝑘 ≡ 𝑠−1𝑒 + 𝑠−1𝑑𝑟 ≡ 𝑤𝑒 + 𝑤𝑟𝑑 ≡ 𝑢1 + 𝑢2𝑑 mod 𝑛

Signature generation Signature verification

Def 𝑟, 𝑠 = sign 𝑚 {
Repeat {

Repeat {

Select random 𝑘 ∈ [1,… 𝑛 − 1]
Compute 𝑘 ∙ 𝑃 = (𝑥, 𝑦)
Compute 𝑟 = 𝑥 mod 𝑛

} until (𝑟 ≠ 0)

Compute 𝑒 = ℋ(𝑚)
Compute 𝑠 = 𝑘−1 𝑒 + 𝑑𝑟 mod 𝑛

} until (𝑠 ≠ 0)

Return 𝑟, 𝑠
}

Def {accept,reject} = verify 𝑟, 𝑠 {
If (𝑟 < 0 or 𝑟 ≥ 𝑛 or s < 0 or s ≥ 𝑛) return reject

Compute 𝑒 = ℋ(𝑚)
Compute 𝑤 = 𝑠−1 mod 𝑛
Compute 𝑢1 = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑟𝑤 mod 𝑛
Compute 𝑋 = 𝑢1 ∙ 𝑃 + 𝑢2 ∙ 𝑄 = (𝑥, 𝑦)
If (𝑋 == 𝒪) return reject

If (𝑥 mod 𝑛 ≠ 𝑟) return reject

Return accept

}

ECDSA

𝑠 = 𝑘−1 𝑒 + 𝑑𝑟 → 𝑘 ≡ 𝑠−1𝑒 + 𝑠−1𝑑𝑟 ≡ 𝑤𝑒 + 𝑤𝑟𝑑 ≡ 𝑢1 + 𝑢2𝑑 mod 𝑛
𝑋 = 𝑢1𝑃 + 𝑢2𝑄 = (𝑢1+𝑢2𝑑)𝑃 = 𝑘𝑃 → 𝑥 mod 𝑛 = 𝑟

Signature generation Signature verification

Using the same random 𝑘 → 𝑘𝑃 = 𝑥, 𝑦 → 𝑟 = 𝑥 mod 𝑛 is also the same

Sign 𝑚1 = 𝑟, 𝑠1 Sign 𝑚2 = 𝑟, 𝑠2

ECDSA – Security 101

The value 𝑟 has the same security requirements as the private key 𝑑

Using the same random 𝑘 → 𝑘𝑃 = 𝑥, 𝑦 → 𝑟 = 𝑥 mod 𝑛 is also the same

Sign 𝑚1 = 𝑟, 𝑠1 Sign 𝑚2 = 𝑟, 𝑠2

𝑒1 = ℋ(𝑚1) 𝑒2 = ℋ(𝑚2)

𝑠1 = 𝑘−1 𝑒1 + 𝑑 ∙ 𝑟 mod 𝑛 𝑠2 = 𝑘−1 𝑒2 + 𝑑 ∙ 𝑟 mod 𝑛

ECDSA – Security 101

The value 𝑟 has the same security requirements as the private key 𝑑

Using the same random 𝑘 → 𝑘𝑃 = 𝑥, 𝑦 → 𝑟 = 𝑥 mod 𝑛 is also the same

Sign 𝑚1 = 𝑟, 𝑠1 Sign 𝑚2 = 𝑟, 𝑠2

𝑒1 = ℋ(𝑚1) 𝑒2 = ℋ(𝑚2)

𝑠1 = 𝑘−1 𝑒1 + 𝑑 ∙ 𝑟 mod 𝑛 𝑠2 = 𝑘−1 𝑒2 + 𝑑 ∙ 𝑟 mod 𝑛

k ∙ 𝑠1 = 𝑒1 + 𝑑 ∙ 𝑟 mod 𝑛 k ∙ 𝑠2 = 𝑒2 + 𝑑 ∙ 𝑟 mod 𝑛

k ∙ (𝑠1 − 𝑠2) ≡ 𝑒1 − 𝑒2 mod 𝑛 → 𝑘 ≡ (𝑒1 − 𝑒2) ∙ (𝑠1 −𝑠2)
−1 mod 𝑛

ECDSA – Security 101

The value 𝑟 has the same security requirements as the private key 𝑑

We can compute 𝑘

Using the same random 𝑘 → 𝑘𝑃 = 𝑥, 𝑦 → 𝑟 = 𝑥 mod 𝑛 is also the same

Sign 𝑚1 = 𝑟, 𝑠1 Sign 𝑚2 = 𝑟, 𝑠2

𝑒1 = ℋ(𝑚1) 𝑒2 = ℋ(𝑚2)

𝑠1 = 𝑘−1 𝑒1 + 𝑑 ∙ 𝑟 mod 𝑛 𝑠2 = 𝑘−1 𝑒2 + 𝑑 ∙ 𝑟 mod 𝑛

k ∙ 𝑠1 = 𝑒1 + 𝑑 ∙ 𝑟 mod 𝑛 k ∙ 𝑠2 = 𝑒2 + 𝑑 ∙ 𝑟 mod 𝑛

k ∙ (𝑠1 − 𝑠2) ≡ 𝑒1 − 𝑒2 mod 𝑛 → 𝑘 ≡ (𝑒1 − 𝑒2) ∙ (𝑠1 −𝑠2)
−1 mod 𝑛

𝑠 = 𝑘−1 𝑒1 + 𝑑 ∙ 𝑟 → 𝑑 = 𝑟−1 𝑘 ∙ 𝑠 − 𝑒1 mod 𝑛

ECDSA – Security 101

The value 𝑟 has the same security requirements as the private key 𝑑

We can compute 𝑘, which allows us to compute the secret key 𝑑

ECDSA – Security 101

Nobody would hard-code this random value 𝑘 right?

ECDSA – Security 101

Terrible example

Used in 2010 to get the private key from Sony’s

video game console PlayStation 3.

The per-message random value 𝑘 was hard-coded.

Nobody would hard-code this random value 𝑘 right?

COMPANY INTERNAL

Fast Scalar

Multiplications

Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

Input: 𝐺 ∈ 𝐸(𝔽𝑝) and ℤ ∋ 𝑠 = σ𝑖=0
𝑘−1 𝑠𝑖 ∙ 2

𝑖

Output: s ∙ 𝐺 ∈ 𝐸(𝔽𝑝)

1. 𝑃 ← 𝐺
2. for (𝑖 = 𝑘 − 2; 𝑖 ≥ 0; 𝑖--) {
3. 𝑃 ← 2 ∙ 𝑃 (double)

4. if (𝑠𝑖 == 1) 𝑃 ← 𝑃 + 𝐺 (add)

5. }

6. Return 𝑃

Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

Input: 𝐺 ∈ 𝐸(𝔽𝑝) and ℤ ∋ 𝑠 = σ𝑖=0
𝑘−1 𝑠𝑖 ∙ 2

𝑖

Output: s ∙ 𝐺 ∈ 𝐸(𝔽𝑝)

1. 𝑃 ← 𝐺
2. for (𝑖 = 𝑘 − 2; 𝑖 ≥ 0; 𝑖--) {
3. 𝑃 ← 2 ∙ 𝑃 (double)

4. if (𝑠𝑖 == 1) 𝑃 ← 𝑃 + 𝐺 (add)

5. }

6. Return 𝑃

Many (!) optimizations possible.

Assume the scalar and point are

random.

Example – Double-and-Add

Naïve double-add algorithm: 13D + 6A

1 10011100000

1000 10011100001

1001 100111000010

10010 100111000011

10011 10011100001100

100110 10011100001101

100111

Example – Windowing

Windowing algorithm (13D + 5A)

Precompute 𝑐𝑃 with 1 ≤ 𝑐 < 2𝑤

Assume 𝑤 = 2, compute window: {𝑃, 2𝑃, 3𝑃} (1D + 1A)

10 1001110000

1000 100111000000

1001 100111000011

100100 10011100001100

100111 10011100001101

10011100

Example – Sliding window

Sliding windowing algorithm (13D + 5A)

Precompute odd 𝑐𝑃 with 1 ≤ 𝑐 < 2𝑤

Assume 𝑤 = 2, compute window: {𝑃, 3𝑃} (1D + 1A)

1 1001110000

100 100111000000

10000 100111000011

10011 10011100001100

100110 10011100001101

100111

Example – Signed sliding window

Signed sliding windowing algorithm (14D + 5A)

Precompute odd 𝑐𝑃 with 1 ≤ 𝑐 < 2𝑤

Assume 𝑤 = 2, compute window: {𝑃, 3𝑃} (1D + 1A)

Exploit that computing negation is efficient: −𝑃 = − 𝑥, 𝑦 = (𝑥, −𝑦)

1 1001110000

100 1001110001

101 10011100010000

101000 10011100001101

100111

Are these approaches secure?

37.

Double-and-Add

Windowing

Sliding windowing

Signed sliding windowing

Are these approaches secure?

38.

Adding 𝓞?

Double-and-Add ✓

Windowing ✓

Sliding windowing 

Signed sliding windowing 

Are these approaches secure?

39.

Adding 𝓞?

Multiple

precomputed

points?

Double-and-Add ✓ 

Windowing ✓ ✓

Sliding windowing  ✓

Signed sliding windowing  ✓

Are these approaches secure?

40.

Adding 𝓞?

Multiple

precomputed

points?

Constant-

time?

Double-and-Add ✓  

Windowing ✓ ✓ 

Sliding windowing  ✓ 

Signed sliding windowing  ✓ 

Constant-time?

Run-time is independent of the key and input to the algorithm

41.

Semi- / Invasive

Attacks

Non Invasive

Attacks

Implementation

Implementation Attacks: Overview

Cryptographically

Secure Algorithm

Side-Channels
Power Consumption

Electromagnetic Emanation

Timing

Communication (Errors)

Heat Emanation

SCA-Attacks
Simple Power Analysis

Differential Power Analysis

Template Attacks

Timing Analysis

Fault Injection
Laser Beam

Power- Clock Glitches

Probes

EM Pulses

Focused Ion Beam

Environmental Stress

Fault Attacks
Attacks on Algorithm

Attacks on Program Flow

Single Bit vs. Multiple Bit

Differential Fault Attacks

Secret

Misuse logical

implementation flaws

Logical Attacks

42

Timing Attacks

• Deduce information about the secret by

measuring runtime of program

 example of (passive) side-channel attack

Can be performed local or remote

• Many things can influence the timing of the

implementation  very hard to create truly

constant-time implementations

Start

Decision

Process 1

Process 2

End

Constant-time?

Run-time is independent of the key and input to the algorithm

• Remote timing attacks

(especially successful against public-key crypto)

• Local cache attacks (multi-user system)

Timing attacks: Cache attack

43.

Wikipedia:

A write-through cache with no-write allocation

Constant-time?

Run-time is independent of the key and input to the algorithm

• Remote timing attacks

(especially successful against public-key crypto)

• Local cache attacks (multi-user system)

Example: FLUSH+RELOAD attack exploits a security

weakness in the X86 architecture: monitor access to

memory lines in shared pages

Timing attacks: Cache attack

44.

Wikipedia:

A write-through cache with no-write allocation

Constant-time?

Run-time is independent of the key and input to the algorithm

New developments in ECC

and impact in practice

45.

Weierstrass curves

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Most general form

• [+] Prime order possible

• [-] Exceptions in group law

• NIST and
Brainpool curves

Elliptic Curve Models - Summary

Montgomery curves

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

• Subset of curves

• [-] Not prime order

• [+] Montgomery ladder

Weierstrass curves

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Most general form

• [+] Prime order possible

• [-] Exceptions in group law

• NIST and
Brainpool curves

Elliptic Curve Models - Summary

Montgomery curves

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

• Subset of curves

• [-] Not prime order

• [+] Montgomery ladder

Twisted Edwards
curves

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

• Subset of curves

• [-] Not prime order

• [+] Fastest arithmetic

• [+] Some
have
complete
group law

Weierstrass curves

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Most general form

• [+] Prime order possible

• [-] Exceptions in group law

• NIST and
Brainpool curves

Elliptic Curve Models - Summary

Montgomery curves

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

• Subset of curves

• [-] Not prime order

• [+] Montgomery ladder

Twisted Edwards
curves

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

• Subset of curves

• [-] Not prime order

• [+] Fastest arithmetic

• [+] Some
have
complete
group law

Weierstrass curves

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Most general form

• [+] Prime order possible

• [-] Exceptions in group law

• NIST and
Brainpool curves

Elliptic Curve Models - Summary

Montgomery ladder

✓ Montgomery curves and

Montgomery ladder were

invented to accelerate ECM.

✓ Regular structure

✓ Montgomery ladder very

efficient in combination with

Montgomery curve

✓ Small memory requirement

Montgomery ladder

✓ Montgomery curves and

Montgomery ladder were

invented to accelerate ECM.

✓ Regular structure

✓ Montgomery ladder very

efficient in combination with

Montgomery curve

✓ Small memory requirement

✓ Can be converted in constant-

time with “constant-time

swapping” depending on 𝑛𝑖

Montgomery Curve

𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥

Cryptographic curve providing 128-bit security

Fast ECDH 

Montgomery ladder

Example: Curve25519

Curve Double Add

Montgomery 11

𝑎 = −3 short Weierstrass 9 14

1987: Montgomery curve

2005: New ECDH speed records using

Curve25519 (Montgomery curve)

Montgomery Curve

𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥
Twisted Edwards curve

−𝑥2 + 𝑦2 = 1 −
121665

121666
𝑥2𝑦2

Cryptographic curve providing 128-bit security

Fast ECDH 

Montgomery ladder
Fast ECDSA 

twisted Edwards arithmetic

Example: Curve25519

Curve Double Add

Montgomery 11

𝑎 = −1 twisted Edwards 7 8

𝑎 = −3 short Weierstrass 9 14

1987: Montgomery curve

2005: New ECDH speed records using

Curve25519 (Montgomery curve)

2008: 𝑎 = −1 twisted Edwards curve

2011: EdDSA new digital signature

speed records

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve

“One curve model to rule them all”

▪ Implement group law, counter measures etc. once.

▪ If new curves are proposed no need to change implementation.

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve

“One curve model to rule them all”

▪ Implement group law, counter measures etc. once.

▪ If new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume
• prime order [almost always assumed]

• short Weierstrass curves [always assumed]

• with curve parameter a = −3 [not widely assumed?]

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve

“One curve model to rule them all”

▪ Implement group law, counter measures etc. once.

▪ If new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume
• prime order [almost always assumed]

• short Weierstrass curves [always assumed]

• with curve parameter a = −3 [not widely assumed?]

Historically this makes sense:

Standard curves 𝐸(𝐅𝑝) with 𝑝>3 prime have these three properties

For instance see:

o NIST, FIPS 186-4, App. D: Recommended Elliptic Curves for Government Use

o SEC 2: Recommended Elliptic Curve Domain Parameters*

(* Except the three Koblitz curves secp192k1, secp224k1, secp256k1, where 𝑎 = 0)

Practice - Backwards compatibility

Existing hardware / software implementations might assume
• prime order [almost always assumed]

❖ This rules out (twisted) Edwards / Montgomery curves

❖ Need additional code to avoid small-subgroup attacks

• short Weierstrass curves [always assumed]

One curve model to rule them all: not a problem

• with curve parameter a = −3 [not widely assumed?]

Practice - Backwards compatibility

Existing hardware / software implementations might assume
• prime order [almost always assumed]

❖ This rules out (twisted) Edwards / Montgomery curves

❖ Need additional code to avoid small-subgroup attacks

• short Weierstrass curves [always assumed]

One curve model to rule them all: not a problem

• with curve parameter a = −3 [not widely assumed?]

One can transform

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 to an isomorphic 𝑦2 = 𝑥3 − 3𝑥 + 𝑏′

if and only if there exists 𝑢 ∈ 𝐅𝑝
∗ such that 𝑢4 = 𝑎/−3 and 𝑢6 = 𝑏/𝑏′

Practice - Backwards compatibility

Zero value / low-torsion attacks
These new curve models have an efficient complete group law.

Any disadvantages?

Idea, focus on points with a zero

coordinate

• zero-coordinate (Goubin’s attack)

• zero-value [Akishita, Takagi]

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Zero value / low-torsion attacks
These new curve models have an efficient complete group law.

Any disadvantages?

Is this a problem for software implementations?

Idea, focus on points with a zero

coordinate

• zero-coordinate (Goubin’s attack)

• zero-value [Akishita, Takagi]

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Zero value / low-torsion attacks
These new curve models have an efficient complete group law.

Any disadvantages?

• Weierstrass: (𝑥, 0) does not exist when using prime order curves.

• 𝑎 = −1 twisted Edwards: 4-torsion exists

Is this a problem for software implementations?

Yes

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Zero value / low-torsion attacks

• Flush-and-reload + 4-torsion + modular reduction code

 attack possible, torsion points make things more complicated!

• See ECC Workshop on Monday for more details

May the Fourth Be With You: A Microarchitectural Side Channel

Attack on Several Real-World Applications of Curve25519

By Daniel Genkin

Example: EdDSA

63.

Example: EdDSA

64.

On many platforms sampling “good” random data is

• non-trivial

• insufficient entropy is available

Predictable nonce  extraction of private key

Example: EdDSA

65.

• Edwards-curve Digital Signature Algorithm (EdDSA)

• Variant of a Schnorr signature

• Deterministic signature

Example: EdDSA

66.

• Public key is point 𝐴 (= sB)

• Secret key is 𝑘, where 𝑠 = 2𝑛 + σ𝑐≤𝑖<𝑛 2
𝑖ℎ𝑖 and ℋ 𝑘 = (ℎ0, ℎ1, … , ℎ2𝑏−1)

• Solves the getting “good” RNG problem, always better?

Differential Fault Analysis

67.

Fault attack

• Clock glitches

• Temporal overclocking

• Voltage spikes

• Temporal switch to higher

(or lower) voltages

• Optical fault injection

The next level: moving from passive to active attacks

Differential Fault Analysis

68.

Fault attack

• Clock glitches

• Temporal overclocking

• Voltage spikes

• Temporal switch to higher

(or lower) voltages

• Optical fault injection

Controlled or uncontrolled fault

Controlled fault  inject a fault in a

target memory range.

For instance, flipping a bit in a byte,

word or any range.

The next level: moving from passive to active attacks

Differential Fault Analysis

69.

Fault attack

• Clock glitches

• Temporal overclocking

• Voltage spikes

• Temporal switch to higher

(or lower) voltages

• Optical fault injection

Controlled or uncontrolled fault

Controlled fault  inject a fault in a

target memory range.

For instance, flipping a bit in a byte,

word or any range.

DFA: use the difference between a faulty and a correct result to

determine information about the secret key used

The next level: moving from passive to active attacks

Example: EdDSA

70.

• Most time-consuming operation is the

elliptic curve scalar multiplication.

• Introduce a fault during the operation

 Change the outcome of the operation

Example: EdDSA

71.

• Most time-consuming operation is the

elliptic curve scalar multiplication.

• Introduce a fault during the operation

 Change the outcome of the operation

Example: EdDSA

72.

• Most time-consuming operation is the

elliptic curve scalar multiplication.

• Introduce a fault during the operation

 Change the outcome of the operation

DFA approach

𝑆 − 𝑆′ ≡ 𝑠 𝑡 − 𝑡′ mod ℓ
 One equation with one unknown

 compute 𝑠 and check if correct using 𝐴 = 𝑠𝐵

Example: EdDSA

73.

Example: Deterministic ECDSA

74.

• In general: DFA countermeasures are expensive.
• Compute twice and compare

Potential countermeasures

75.

• In general: DFA countermeasures are expensive.
• Compute twice and compare

• What about a hybrid approach? Use either

𝑟 = ℋ(ℎ𝑏, … , ℎ2𝑏−1, 𝑚
′) or 𝑟 = ℋ 𝑅, ℎ𝑏, … , ℎ2𝑏−1, 𝑚

′

Where 𝑅 is high-quality randomness.

Potential countermeasures

76.

• In general: DFA countermeasures are expensive.
• Compute twice and compare

• What about a hybrid approach? Use either

𝑟 = ℋ(ℎ𝑏, … , ℎ2𝑏−1, 𝑚
′) or 𝑟 = ℋ 𝑅, ℎ𝑏, … , ℎ2𝑏−1, 𝑚

′

Where 𝑅 is high-quality randomness.

Potential countermeasures

77.

Advantages

✓ Improved protection on platforms where DFA is a threat

✓ No change to

✓ Implementations which are not concerned with DFA

✓ Key generation and signature verification algorithms

However, no longer a deterministic signature scheme.

• Implementing elliptic curve crypto is fun,
• Creating fast / small implementations is a nice challenge

New developments in ECC (Curve25519) are fast but not backwards compatible.

• Creating a “secure” implementation is very hard

• What does secure mean?
• Timing attacks? Cache attacks?

• Other passive attacks? (e.g. power)

• Active attacks  fault injections?

• A lot of opportunity for things to go wrong in practice
• Protocol level

• Algorithm level

• Implementation level

This is what makes this field so much fun!

Conclusions

78.

