< i >

<5*
S

Joppe W. Bos
| World Crypto 2017

SECURE CONNECTIONS
FOR A SMARTER WORLD

NXP Semiconductors Operations in > 35 countries, more than 130 facilities
~ 45,000 employees
Research & Development
~ 11,200 engineers in 23 countries

HEADQUARTERS
EINDHOVEN, NETHERLANDS

9 R&D 9

Elliptic Curves

What is an elliptic curve?

Not an ellipse!

Elliptic Curves

What is an elliptic curve? Amfol gesdel fedoien) pfesods plesos
Not an ellipse! NI

Mathematical perspective

Smooth, projective algebraic curve of genus one which together
with a point “at infinity” forms an abelian variety

(™|
i |

Elliptic Curves

What is an elliptic curve? Amfol gesdel fedoien) pfesods plesos
Not an ellipse! NI

Mathematical perspective

Smooth, projective algebraic curve of genus one which together
with a point “at infinity” forms an abelian variety

Practical perspective
When defined over a large prime field an elliptic curve simply is

E/Fyy*=x*+ax+b suchthat 4a®+27b* # 0

(™|

Elliptic Curves

What is an elliptic curve? Amfol gesdel fedoien) pfesods plesos
Not an ellipse! NI

Mathematical perspective

Smooth, projective algebraic curve of genus one which together
with a point “at infinity” forms an abelian variety

Practical perspective
When defined over a large prime field an elliptic curve simply is

E/Fyy*=x*+ax+b suchthat 4a®+27b* # 0

Engineering perspective
An “algorithm” which needs to be implemented in a “secure” way

(™|

Goal of this Lecture

Creating ECC implementations is easy
« Play around with Sage, Magma
 Evenin C this is trivial

(™|
i |

Goal of this Lecture

Creating ECC implementations is easy
« Play around with Sage, Magma
 Evenin C this is trivial

Creating efficient (performance / memory / binary size) ECC
Implementations is a challenge

(™|
i |

Goal of this Lecture

Creating ECC implementations is easy
« Play around with Sage, Magma
 Evenin C this is trivial

Creating efficient (performance / memory / binary size) ECC
Implementations is a challenge

Creating efficient and secure ECC implementations is hard
» Define “secure”?

Goal.

Show some examples how different settings of “secure” have an impact
on ECC software design in practice.

- Common mistakes made Iin practice. } [

e F

ECC in Practice
Security 101

SeLs
ot YL : siyy e o
otye * 5 b oo, -
- =0 B -
— /)
- oo T uiol W
—c 5 A

4 = S 616 W
" - e - - oy '
i © NS
i,y - ® oSV

L LY
e ; ¢
o = .
— (e
= _v.-nq R
= .
=

.- . |
SO BVt
P .
P -
-

oo o® -o9 o0

X Te =

52 [}
. oy

.
LRI

SECURE CONNECTIONS
FOR A SMARTER WORLD

-j .

Elliptic Curves in Hardware and Software in Practice

()
We see an increase in support for ECC in software, for example

= 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”
= Around 5 million hosts support ECC in TLS / SSH

" Many TLS servers prefer ciphersuites with ECDHE

Elliptic Curves in Hardware and Software in Practice

We see an increase in support for ECC in software, for example

» 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”
= Around 5 million hosts support ECC in TLS / SSH

= Many TLS servers prefer ciphersuites with ECDHE

Hardware ECC
v" Currently, ECC coprocessors are used
v in billions of smart cards securing ID cards, passports and banking
v' for 15 years in devices supporting the Digital Transmission Content Protection system

(Short-term) future: Internet-of-Things, prediction
v" 5 billion things at the end of 2015
v" 25 billion things around 2020

« For asymmetric crypto, ECC is the logical choice: small keys, fast on embedded platforms, etc
+ Many “things” need to communicate securely with user-apps and possibly the world wide web
+ Hardware and software implementation will start to talk to each other (more frequently)!

(™|
i |

ECC Keys

Domain parameters

(p,a,b,G,n,h)

* p € Z prime number which defines I,
* a,b€eF,definey*=x>+ax+b
 G=(x,y)€ E([Fp)

 n € Z prime order of G

* h € Zco-factor, h = #E(IF,) /n

(™|
i |

ECC Keys

Domain parameters Private key: d € Z/nZ
Publickey: P =d -G € E(F,)

(p,a,b,G,n,h)

* p € Z prime number which defines I,
* a,b€eF,definey*=x>+ax+b
 G=(x,y)€ E([Fp)

 n € Z prime order of G

* h € Zco-factor, h = #E(IF,) /n

(™|
|

ECC Keys

Domain parameters

(p,a,b,G,n,h)

* p € Z prime number which defines I,
* a,b€eF,definey*=x>+ax+b
 G=(x,y)€ E([Fp)

« n € Z prime order of G Curve P-192
* h € Zco-factor, h = #E(IF,) /n Curve P-224
These domain parameters are Curve P-256
publicly available through Curve P-384
named identifiers Curve P-521

Private key: d € Z/nZ
Publickey: P =d -G € E(F,)

secpl9z2rl
secp224rl
secp256rl
secp384rl
secp521rl

primel92vl

prime256v1

primel92vl
secp224rl
prime256v1
secp384rl
secp521rl

y
4\

Programming 101

Low level: The implementation - the basics

static int buffer[128];

int read_buffer(int index) {
if (index < 128)
return buffer[index];
return ERROR;

}

What is wrong with this code?

(™|
i |

16.

Programming 101

Low level: The implementation - the basics

static int buffer[128];

int read_buffer(int index) {
if (index < 128)
return buffer[index];
return ERROR;

}

What is wrong with this code?

Buffer underrun!

(™|
i |

17.

Programming 101

static int buffer[128];
int read_buffer(int index) {
if (index < 128)

return buffer[index];
return ERROR;

}

What is wrong with this code?

Buffer underrun!

18.

Since C has been used for more than 30 years
resulting in a large base of legacy code that is still
being used in present day (new) products.

Much of the legacy code dates back from even
before the C language standardization.

Legacy code requires significantly more effort to
secure than more recent code due to :

» Coding style

* Lack of security knowledge during implementation
» Loose compiler standards at the time of
implementation

ANSI-C offers by default little to no security
measures

(™|
|

Alice’s Alice’s
private public
signature verification
key key
ci.
SkA
(m, s)
S(m,ska) = s
message
and
signature signature signature
generation verification
function function

High level: The protocol - the basics

» \/(m,s,vka) = true/false

ECDSA

Signature generation

Def (r,s) = sign(m) {
Repeat {
Repeat {
Selectrandom k € [1,...n — 1]
Compute k- P = (x,y)
Compute r = x mod n
}until (r = 0)
Compute e = H(m)
Compute s = k~1(e + dr) mod n
}until (s = 0)
Return (r, s)

}

(™|
i |

ECDSA

Signature generation Signature verification
Def (r,s) = sign(m) { Def {accept,reject} = verify(r, s) {
Repeat { If (r < 0orr>nors<0ors = n)return reject
Repeat { Compute e = H(m)
Selectrandom k € [1,..n — 1] Compute w = s"! modn
Compute k- P = (x,y) Compute u; = ew modn and u, = rw mod n
Compute r = x mod n Compute X =u; -P+u,-Q =(x,y)
}until (r # 0) If (X == O) return reject
Compute e = H(m) If (x mod n # r) return reject
Compute s = k™1(e + dr) mod n Return accept
}until (s # 0) }
Return (r, s)
}

(™|
|

ECDSA

Signature generation

Def (r,s) = sign(m) {
Repeat {
Repeat {
Selectrandom k € [1,...n — 1]
Compute k- P = (x,y)
Compute r = x mod n
}until (r = 0)
Compute e = H(m)
Compute s = k= *(e + dr) mod n
}until (s = 0)
Return (r, s)

}

Signature verification

Def {accept,reject} = verify(r, s) {
If (r < 0orr>nors<0ors = n)return reject
Compute e = H'(m)
Compute w = s ' modn
Compute 1; = ew modn and u, = rw mod n
Compute X =u;-P+u,-Q = (x,5)
If (X == O) return reject
If (x mod n # r) return reject
Return accept

s=kle+dr) nk=ste+stdr=we+wrd =u, +u,d (modn)

(™|
i |

ECDSA

Signature generation Signature verification
Def (r,s) = sign(m) { Def {accept,reject} = verify(r, s) {
Repeat { If (r < 0orr>nors<0ors = n)return reject
Repeat { Compute e = H(m)
Selectrandom k € [1,..n — 1] Compute w = s"! modn
Compute k- P = (x,y) Compute u; = ew modn and u, = rw mod n
Compute r = x mod n Compute X =u; -P+u,-Q =(x,y)
}until (r # 0) If (X == O) return reject
Compute e = H(m) If (x mod n # r) return reject
Compute s = k™1(e + dr) mod n Return accept
}until (s # 0) }
Return (r, s)
}

s=kle+dr) nk=ste+stdr=we+wrd =u, +u,d (modn)
X=uP+u,Q =(u+u,d)P =kP - xmodn=r

(™|
|

ECDSA — Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) » r = x mod n is also the same

Sign(my) = (r,51)

Sign(m,) = (1, ;)

(™|
i |

ECDSA — Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) » r = x mod n is also the same

Sign(m,) = (r,51)

Sign(m,) = (1, ;)

e, = H(my)

e, = H(my)

s, =k (e, +d-r)modn

s, =k (e, +d-r) modn

(™|
i |

ECDSA - Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) - r = x mod n is also the same

Sign(my) = (r,51) Sign(m,) = (1, ;)
e; = H(my) e; = H(my)
s, =k (e, +d-r)modn s, =k (e, +d-r)modn
k-s; =e;+d-rmodn k-s, =e;+d-rmodn

k-(s;—s))=e —e;,modn - k=(e;—ey)-(s;—5,) T modn

We can compute k

(™|
i |

ECDSA - Security 101

The value r has the same security requirements as the private key d

Using the same random k — kP = (x,y) - r = x mod n is also the same

Sign(m,) = (r,s1) Sign(m,) = (1, 52)
e; = H(my) e; = H(my)
s, =k (e, +d-r)modn s, =k (e, +d-r)modn
k-s; =e;+d-rmodn k-s, =e,+d-rmodn

k-(s;—s))=e —e;,modn - k=(e;—ey)-(s;—5,) T modn

s=kl(e;+d-r) - d=r"Yk-s—e;)modn

We can compute k, which allows us to compute the secret key d

(™|
i |

ECDSA - Security 101

Nobody would hard-code this random value k right?

(™|

ECDSA - Security 101

Nobody would hard-code this random value k right?

int getRandomNumber ()

return 4. // chosen by fair dice roll.
J/ Quaranteed to be random.

Terrible example

Used in 2010 to get the private key from Sony’s
video game console PlayStation 3.
The per-message random value k was hard-coded.

A 4
4\

SECURE CONNECTIONS
FOR A SMARTER WORLD

Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

flnput: G €E(F,) and Z3s = kols; - 28 N
Output: s+ G € E(IF,)

l. P«<G

2. for(i=k—-2;i =20;i--){

3. P<2:-P (double)
4, if(s;==1)P <P+ (add)

5. }

\6. Return P Y

(™|
i |

Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

flnput: G €E(F,) and Z3s =

Output: s - G € E(F,)

P<G

for(i=k—-2;i 20;i--){
P<2-P

if(s; ==1)P<P+G

}

Return P

(oo s wN P

k-1

i
i—o Si* 2

(double)
(add)

~N

Many (!) optimizations possible.

Assume the scalar and point are
random.

(™|
i |

Example — Double-and-Add
999710 = 100111000011015

Naive double-add algorithm: 13D + 6A

D? +A—-D—3A—-D—-3A—-D>3A3D— A
(2% +20) -2 4 20) . 21 4 20) . 25 4 20) . 21 4 20) . 22

1 10011100000
1000 10011100001
1001 100111000010
10010 100111000011
10011 10011100001100
100110 10011100001101
100111

(™|
i |

Example — Windowing
999710 = 100111000011015

Windowing algorithm (13D + 5A)
Precompute cP with 1 < ¢ < 2%
Assume w = 2, compute window: {P,2P,3P} (1D + 1A)

((((2-2°+1)-22+3)-2°+0)-27+0) - 2° +3) - 2 + 1 = 9997

10 1001110000

1000 100111000000

1001 100111000011

100100 10011100001100

100111 10011100001101

10011100 Y
A\

Example — Sliding window
999710 = 100111000011015

Sliding windowing algorithm (13D + 5A)
Precompute odd cP with1 < ¢ < 2%
Assume w = 2, compute window: {P,3P} (1D + 1A)

(2*+3)-2+1)-264+3).224+1=9997

1 1001110000

100 100111000000
10000 100111000011
10011 10011100001100
100110 10011100001101
100111

(™|
i |

Example — Signed sliding window

999710 = 10011100001101>

Signed sliding windowing algorithm (14D + 5A)

Precompute odd cP with1 < ¢ < 2%

Assume w = 2, compute window: {P,3P} (1D + 1A)

Exploit that computing negation is efficient: —P = —(x,y) = (x, —y)

((22+1)-2°2—-1)-2*+1)-2* -3

1 1001110000

100 1001110001

101 10011100010000
101000 10011100001101
100111

(™|
i |

Are these approaches secure?

Windowing

Signed sliding windowing

37.

Are these approaches secure?

Adding O0?

Windowing v
Signed sliding windowing x

38.

Are these approaches secure?

39.

Multiple
Adding O0? precomputed

points?

Windowing v v
Signed sliding windowing x v

Are these approaches secure?

Multiple
Adding 0? precomputed
points?

Constant-
time?

Windowing v v x
Signed sliding windowing x v x

Constant-time?
Run-time is independent of the key and input to the algorithm

40.

Implementation Attacks: Overview

Side-Channels

Power Consumption
Electromagnetic Emanation
Timing Secret
Communication (Errors)
Heat Emanation

d

SCA-Attacks

Simple Power Analysis
Differential Power Analysis
Template Attacks

Timing Analysis

Non Invasive
Attacks

Implementation

J
Misuse logical
Implementation flaws

Logical Attacks

41.

Environmental Stress

Fault Injection
Laser Beam
Power- Clock Glitches
Probes

EM Pulses

Focused lon Beam

Fault Attacks

Attacks on Algorithm
Attacks on Program Flow
Single Bit vs. Multiple Bit
Differential Fault Attacks

Semi-/ Invasive
Attacks

4\

Timing Attacks

Deduce information about the secret by
measuring runtime of program

- example of (passive) side-channel attack
Can be performed local or remote

Many things can influence the timing of the
Implementation - very hard to create truly
constant-time implementations

Start

\ 4 \ 4

Process 2

Process 1

{ Constant-time?

Run-time is independent of the key and input to the aIgorithmJ ¢

Timing attacks: Cache attack ?

Read - Request . Wiite

Remote timing attacks <= <

(especially successful against public-key crypto) \T
Local cache attacks (multi-user system) -- -

Wikipedia:
A write-through cache with no-write allocation

Timing attacks: Cache attack +

Read

Request

Write

Remote timing attacks —_— d -
(especially successful against public-key crypto) ‘L > Tv
Local cache attacks (multi-user system) Locste acache Wi data it
block to use cache block
Example: FLUSH+RELOAD attack exploits a security v J
weakness in the X86 architecture: monitor access to overmermny i wite dela no
memory lines in shared pages ‘L
Return data f
(
§ I A
Constant-time? Wikipedia:
Run-time is independent of the key and input to the algorithm Awrite-through casSgiiity no-write allocation
\ ¥ 4
4\

44,

SECURE CONNECTIONS
FOR A SMARTER WORLD

Elliptic Curve Models - Summary

Weierstrass curves
y2=x3+ax+b

 Most general form
* [+] Prime order possible
« [-] Exceptions in group law

« NIST and
Brainpool curves

-

Elliptic Curve Models - Summary

Weierstrass curves Montgomery curves
y?=x*+ax+b By? =x3 + Ax? 4+ x
 Most general form * Subset of curves

* [+] Prime order possible * [-] Not prime order
* [-] Exceptions in group law « [+] Montgomery ladder

« NIST and
Brainpool curves

Elliptic Curve Models - Summary

Weierstrass curves Montgomery curves Twisted Edwards
y2=x34+ax+b By? =x3 4+ Ax? +x curves

ax? +y% =1+ dx?y?

* Most general form

Subset of curves

 [+] Prime order possible « [-] Not prime order * Subset of curves
* [-] Exceptions in group law « [+] Montgomery ladder * [-] Not prime order
« NIST and » [+] Fastest arithmetic
Brainpool curves . [+] Some
have
complete
group law

Elliptic Curve Models - Summary

Weierstrass curves
y2=x3+ax+b

 Most general form .
* [+] Prime order possible .
« [-] Exceptions in group law e

« NIST and
Brainpool curves

Montgomery curves

By® = x3 + Ax* + x

Twisted Edwards
curves

ax? +y? =1+ dx?y?

Subset of curves < Tm—)

[-] Not prime order
[+] Montgomery ladder

Subset of curves
[-] Not prime order
[+] Fastest arithmetic

[+] Some
have

complete
group law

Montgomery ladder

v Montgomery curves and

Montgomery ladder were Algorithm 4 Montgomery ladder
invented to accelerate ECM. G € E,y(F,)
| , =1
v' Regular structure Input: n=>3Y ni2',n€Zso 251 <n<2
1=0
v' Montgomery ladder very Output: P =nG € Eqp(Fp)
efficient in combination with L PG Q<G
3. if n; =1 then
v Small memory requirement 4. (P,Q) + (P+Q.,2Q)
5 else
6. (P,Q) « (2P, P + Q)

| ™|
|

Montgomery ladder

v Montgomery curves and

Montgomery ladder were Algorithm 4 Montgomery ladder

iInvented to accelerate ECM. G e Ea o(F)
v' Regular structure Input: n = Z ni2tn € Zwg, 2"t <n < 2k
v' Montgomery ladder very Output: P = nG € Eap(Fp)

efficient in combination with L PG QR+G

Montgomery curve 2. for i =k — 2 down to 0 do
if n, =1 then

v Small memory requirement ‘Q (P +Q,2Q)

v" Can be converted in constant- 6- (2P, P + Q)
time with “constant-time v
swapping” depending on n; 4\

Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve
y? = x3 4+ 486662x% + x

Fast ECDH >
Montgomery ladder

1987: Montgomery curve
2005: New ECDH speed records using

Montgomery 11 Curve25519 (Montgomery curve)

a = —3 short Weierstrass 9 14

Example: Curve25519

Cryptographic curve providing 128-bit security

Montgomery Curve ﬁ Twisted Edwards curve
y? = x3 + 486662x% + x 121665 ,

2 42 =1
Y =1 1666 Y
Fast ECDH -> Fast ECDSA -
Montgomery ladder twisted Edwards arithmetic

1987: Montgomery curve
2005: New ECDH speed records using

Montgomery 11 Curve25519 (Montgomery curve)

a = —1 twisted Edwards 7 8 2008 a=-—1 tW|Sted Edwal‘dS curve
_ 2011: EADSA - new digital signature

a = —3 short Weierstrass 9 14 speed records

A ¥ 4
4\

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.
Given a curve in another curve model one can always translate this to an equivalent Welerstrass curve
“One curve model to rule them all”

= Implement group law, counter measures etc. once.
» |f new curves are proposed no need to change implementation.

-

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.
Given a curve in another curve model one can always translate this to an equivalent Welerstrass curve
“One curve model to rule them all”

= Implement group law, counter measures etc. once.
» |f new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume

* prime order [almost always assumed]
* short Weierstrass curves [always assumed]
* with curve parametera = -3 [not widely assumed?]

-

Practice - Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.
Given a curve in another curve model one can always translate this to an equivalent Welerstrass curve
“One curve model to rule them all”

= Implement group law, counter measures etc. once.
» |f new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume

* prime order [almost always assumed]
* short Weierstrass curves [always assumed]
* with curve parametera = -3 [not widely assumed?]

Historically this makes sense:

Standard curves E (F,) with p>3 prime have these three properties

For instance see:

o NIST, FIPS 186-4, App. D: Recommended Elliptic Curves for Government Use

o SEC 2: Recommended Elliptic Curve Domain Parameters*

(* Except the three Koblitz curves secpl192k1, secp224kl, secp256k1, where a = 0) g

Practice - Backwards compatibility

Existing hardware / software implementations might assume
« prime order [almost always assumed]

+ This rules out (twisted) Edwards / Montgomery curves
+ Need additional code to avoid small-subgroup attacks

» short Weierstrass curves [always assumed]
One curve model to rule them all: not a problem

« with curve parametera = -3 [not widely assumed?]

PR {

Practice - Backwards compatibility

Existing hardware / software implementations might assume
« prime order [almost always assumed]

¢ This rules out (twisted) Edwards / Montgomery curves
+ Need additional code to avoid small-subgroup attacks

» short Weierstrass curves [always assumed]
One curve model to rule them all: not a problem

« with curve parametera = -3 [not widely assumed?]
One can transform
y2=x3+ax+b to an isomorphic y2=x3-3x+b

if and only if there exists u € F; such that u* = a/—3 and u® = b/b’

-
2 |

Zero value / low-torsion attacks

These new curve models have an efficient complete group law.
Any disadvantages?

-
2 |

Zero value / low-torsion attacks

These new curve models have an efficient complete group law.
Any disadvantages?

Idea, focus on points with a zero

coordinate (x,0), point of order 2 (0,1), 1-torsion

« zero-coordinate (Goubin’s attack) (0, +Vb) (0,—1), 2-torsion

« Zzero-value [Akishita, Takagi] (Va1 0), A-torsion

-
|

Zero value / low-torsion attacks

These new curve models have an efficient complete group law.
Any disadvantages?

Idea, focus on points with a zero

coordinate (x,0), point of order 2 (0,1), 1-torsion
« zero-coordinate (Goubin’s attack) (0, +Vb) (0,—1), 2-torsion
« Zzero-value [Akishita, Takagi] (Va1 0), A-torsion

« Welerstrass: (x, 0) does not exist when using prime order curves.
* a = —1 twisted Edwards: 4-torsion exists

Is this a problem for software implementations?

Zero value / low-torsion attacks

Is this a problem for software implementations?
Yes

(x,0), point of order 2 (0,1), 1-torsion
(0, +Vb) (0,—1), 2-torsion
(+Va~1,0), 4-torsion

* Flush-and-reload + 4-torsion + modular reduction code
—> attack possible, torsion points make things more complicated!

« See ECC Workshop on Monday for more details
May the Fourth Be With You: A Microarchitectural Side Channel
Attack on Several Real-World Applications of Curve25519
By Daniel Genkin ¥

Example: EdDSA

Algorithm 1 ECDSA signature generation
of a message m with the secret key d.

function ECDSA _siGN(m, d)
e =H(m)
repeat
repeat
Select v € [1,n — 1] uniform random
(r,9) = uG € By(F,)
r=zxmodn
until r #£ 0
s=u"'(e+dr) modn
until s # 0

return (r,s)

63.

(™|
i |

Example: EdDSA

Algorithm 1 ECDSA signature generation
of a message m with the secret key d.
function ECDSA _siGN(m, d)
e =H(m)

repeat

repe
Select u € [1,n — 1] uniform@
I; = wﬂ = F, (Wr\

r=xmodn
until r #£ 0
s=u"'(e+dr) modn
until s # 0

return (r,s)

On many platforms sampling “good” random data is
* non-trivial

 insufficient entropy is available

Predictable nonce - extraction of private key

64.

(™|
i |

Example: EdDSA

Algorithm 1 ECDSA signature generation Algorithm 2 EADSA signature generation of a mes-

of a message m with the secret key d. sage m with the secret key k.
function ECDSA _siaN(m, d) function EDDSA _ stan((m, k))
e = H(m) m' = H, (m)
repeat Retrieve or compute (hp,...,hop—1) from Ha(k) =

repe (h(],hl,-- . 5h’2b—1)
Select w € [1,n — 1] uniform@ r = Ha(hp, ..., hap—1,m') mod ¢
z)7wf‘c F‘.(TFP\

R=rBc E,q4(F,)

7: = x mod n t=""H> (ENCPOINT(R)1 ENCPOIN'T(A)= m’)
until » £ 0 S = (r+ts) mod/
s=u"'(e+dr) modn return (ENCponr(R), ENC:(5))
until s £ 0

return (r,s)

« Edwards-curve Digital Signature Algorithm (EdDSA)
« Variant of a Schnorr signature
« Deterministic signature

65.

(™|
i |

Example: EdDSA

Algorithm 1 ECDSA signature generation Algorithm 2 EADSA signature generation of a mes-

of a message m with the secret key d. sage m with the secret key k.
function ECDSA _siaN(m, d) function EpDSA _stan((m, k))
e ="H(m) m’ = Hi(m)
repeat Retrieve or compute (hy,...,hop—1) from Ha(k) =
repe (hg 1755 1)
@E (1,n—1] umform@ r— 71’.2(hap_1,m") mod £
, = o F (W h| Eu,u(wﬁrj
r=xmodn t = Hz ENCPOINT(R)1 ENCPOIN'T(A)1 m’)
until » £ 0 S = (r+ts) mod/
s =u""'(e+dr) mod n return (ENCponr(R), ENC:(5))
until s £ 0

return (r,s)

* Public key is point A (= sB)
 Secretkey is k, where s = 2"+ Y __;_, 2th; and H (k) = (hg, hq, ..., hyp—_1)

« Solves the getting “good” RNG problem, always better?

66.

(™|

i |

Differential Fault Analysis
The next level: moving from passive to active attacks

Fault attack
« Clock glitches
« Temporal overclocking
» Voltage spikes
« Temporal switch to higher
(or lower) voltages
« Optical fault injection

67.

(™|

i |

Differential Fault Analysis
The next level: moving from passive to active attacks

FaU|It atktafl{k) 4 Controlled or uncontrolled fault A
* Clock glitches _ Controlled fault = inject a fault in a
« Temporal overclocking

_ target memory range.
- Voltage spikes For instance, flipping a bit in a byte,

« Temporal switch to higher e GF B EEE
(or lower) voltages 2 y range. /

« Optical fault injection

(™|
|

68.

Differential Fault Analysis
The next level: moving from passive to active attacks

Fault attac_k 4 Controlled or uncontrolled fault A
» Clock glitches _ Controlled fault © inject a fault in a
. Tempc_)ral overclocking target memory range.
* Voltage spikes _ For instance, flipping a bit in a byte,
« Temporal switch to higher word or any range.
(or lower) voltages C)
« Optical fault injection
DFA: use the difference between a faulty and a correct result to
determine information about the secret key used
A ¥ 4

69. 4\

Example: EdDSA

« Most time-consuming operation is the
elliptic curve scalar multiplication.

* Introduce a fault during the operation

- Change the outcome of the operation

70.

Algorithm 2 EdDSA signature generation of a mes-
sage m with the secret key k.
function EpDSA sianN((m, k))
m' = Hi(m)
Retrieve or compute (hy
Ul-(}._ 1‘11 h‘2b—l}
r = Holhy, ..., hop_1,m’) mod £
R=r1B € E,4(F,)
L= H'Z(ENCPOINT(R:}! ENCPOJ.\:T(A}:?TIF)
S = (r+ts) mod ¢
return (ENCponr(R), ENC1r(S))

..... h-gb_l} from Hz(!’i) =

(™|
i |

Example: EdDSA

« Most time-consuming operation is the
elliptic curve scalar multiplication.

* Introduce a fault during the operation

- Change the outcome of the operation

(R, S)
(R, S)

(rB,r +ts mod /)

= (r'B,r +t's mod /)

Algorithm 2 EdDSA signature generation of a mes-
sage m with the secret key k.
function EpDSA sianN((m, k))
m' = Hi(m)
Retrieve or compute (hy,..., hap—1) from Ha(k) =
Ul-(}._ 1‘11 h‘2b—l}
r = Holhu .. hop_1,m’) mod £
q= rB e E;;_;I(ED
t = Ha(ENCpomr (1), ENCPOJNT(‘dL?TIF)
S = (r+ts) mod ¢
return (ENcCponr(R), ENCr(S))

t = %Q(ENCPDINT(RF)E ENCPGINT(A):' mf)

71.

(™|
i |

EX am p | =N Ed DSA Algorithm 2 EdDSA signature generation of a mes-

sage m with the secret key k.
function EDDSA _sian((m, k))

. M(_)st. time-consuming oper_atiqn IS the ;L;e?f;(fﬂ compute (hy, ... hap_1) from Ha(k) =
elliptic curve scalar multiplication. (ho, b, - ., hav-1)

r = Holhueo. . hop_1,m') mod ¢

t = Ha(ENCpomr (R): ENCPOINT(A)'J m’}
S = (r+ts) mod £

return (ENCpor(R), ENCr(S))

* Introduce a fault during the operation
- Change the outcome of the operation

(R,S) = (rB,r +ts mod /)
(R',S") = ('"B,r +t's mod /)
t' = Ha(ENCponr(R'), ENCpoyr(4), m')

DFA approach
S—S"=s(t—t')mod?

- One equation with one unknown
72. —> compute s and check if correct using A = sB

Example: EdDSA

Table 1. Overview of the different proposed attacks against EADSA which result in extracting the private key s.

where attack type number of faults
Import point B fault uncontrolled >1
Import point A fault controlled > 1
Hash computation of r fault controlled >1
Hash computation of r
with fixed (unknown) output { fault uncontrolled 21 }
Scalar multiplication r B fault uncontrolled >1
Hash computation of ¢ fault controlled >1
Hash computation of ¢

>
with fixed (unknown) output { fault controlled =2 }
Computation of S fault controlled >1
Hash computation of r DPA/DEMA — -

(™|
i |

73.

Example: Deterministic ECDSA

Table 2. Overview of the different possible attacks against deterministic ECDSA which result in extracting the
private key d.

where attack type number of faults
Import point G fault uncontrolled >1
Hash computation of u fault controlled >1
Hash computation of u

>
with fixed (unknown) output { faule uheontroled 21 }
Scalar multiplication uGG fault uncontrolled >1
Computation of s fault controlled > 1
Generation of u DPA /DEMA — -

)

Potential countermeasures

In general: DFA countermeasures are expensive.
« Compute twice and compare

75.

(™|
i |

Potential countermeasures

In general: DFA countermeasures are expensive.
« Compute twice and compare

What about a hybrid approach? Use either
r = }[(hb' ver th—l' m,) orr = :]'[(R, h’b' ver) th_l,m')

Where R is high-quality randomness.

76.

(™|
i |

Potential countermeasures

In general: DFA countermeasures are expensive.
« Compute twice and compare

What about a hybrid approach? Use either
r = f]’[(hb, very th_l, m') orr = }[(R, hb, veny th_l, m')
Where R is high-quality randomness.
Advantages

v" Improved protection on platforms where DFA is a threat
v" No change to

v" Implementations which are not concerned with DFA
v' Key generation and signature verification algorithms
However, no longer a deterministic signature scheme.

7.

Conclusions

Implementing elliptic curve crypto is fun,
» Creating fast / small implementations is a nice challenge
New developments in ECC (Curve25519) are fast but not backwards compatible.
» Creating a “secure” implementation is very hard

What does secure mean?
« Timing attacks? Cache attacks?
« Other passive attacks? (e.g. power)
« Active attacks - fault injections?

A lot of opportunity for things to go wrong in practice
* Protocol level
« Algorithm level
« Implementation level

This is what makes this field so much fun!

78.

(™|

SECURE CONNECTIONS
FOR A SMARTER WORLD

