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≈ 45,000 employees

Research & Development

≈ 11,200 engineers in 23 countries
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What is an elliptic curve?

Elliptic Curves

Not an ellipse!

Mathematical perspective

Smooth, projective algebraic curve of genus one which together 

with a point “at infinity” forms an abelian variety

Practical perspective

When defined over a large prime field an elliptic curve simply is

𝐸/𝔽𝑝: 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏 such that       4𝑎3 + 27𝑏2 ≠ 0

Engineering perspective

An “algorithm” which needs to be implemented in a “secure” way
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• Creating ECC implementations is easy
• Play around with Sage, Magma

• Even in C this is trivial

• Creating efficient (performance / memory / binary size) ECC 

implementations is a challenge

• Creating efficient and secure ECC implementations is hard
• Define “secure”?

Goal.

• Show some examples how different settings of “secure” have an impact 

on ECC software design in practice.

• Common mistakes made in practice.

Goal of this Lecture
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ECC in Practice

Security 101

COMPANY INTERNAL
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We see an increase in support for ECC in software, for example

▪ 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”

▪ Around 5 million hosts support ECC in TLS / SSH

▪ Many TLS servers prefer ciphersuites with ECDHE

Hardware ECC 

✓ Currently, ECC coprocessors are used 

✓ in billions of smart cards securing ID cards, passports and banking

✓ for 15 years in devices supporting the Digital Transmission Content Protection system

(Short-term) future: Internet-of-Things, prediction

✓ 5 billion things at the end of 2015

✓ 25 billion things around 2020

• For asymmetric crypto, ECC is the logical choice: small keys, fast on embedded platforms, etc

• Many “things” need to communicate securely with user-apps and possibly the world wide web

• Hardware and software implementation will start to talk to each other (more frequently)!

Elliptic Curves in Hardware and Software in Practice



ECC Keys

Domain parameters

𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ
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ECC Keys

Domain parameters

𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ

• 𝑝 ∈ ℤ prime number which defines 𝔽𝑝
• 𝑎, 𝑏 ∈ 𝔽𝑝 define 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• 𝐺 = (𝑥, 𝑦) ∈ 𝐸(𝔽𝑝)

• 𝑛 ∈ ℤ prime order of 𝐺
• ℎ ∈ ℤ co-factor, h = #𝐸(𝔽𝑝)/𝑛

These domain parameters are

publicly available through 

named identifiers

NIST SEC ANSI X9.62 OpenSSL

Curve P-192 secp192r1 prime192v1 prime192v1

Curve P-224 secp224r1 secp224r1

Curve P-256 secp256r1 prime256v1 prime256v1

Curve P-384 secp384r1 secp384r1

Curve P-521 secp521r1 secp521r1

Private key: 𝑑 ∈ ℤ/𝑛ℤ
Public key: 𝑃 = 𝑑 ∙ 𝐺 ∈ 𝐸(𝔽𝑝)
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18.

static int buffer[128];

int read_buffer(int index) {
if (index < 128) 
return buffer[index];

return ERROR;
}

What is wrong with this code?

Buffer underrun!

Since C has been used for more than 30 years 

resulting in a large base of legacy code that is still 

being used in present day (new) products.

Much of the legacy code dates back from even 

before the C language standardization.

Legacy code requires significantly more effort to 

secure than more recent code due to :

• Coding style

• Lack of security knowledge during implementation 

• Loose compiler standards at the time of 

implementation

ANSI-C offers by default little to no security 

measures



High level: The protocol  the basics



Def 𝑟, 𝑠 = sign 𝑚 {
Repeat {

Repeat {

Select random 𝑘 ∈ [1,… 𝑛 − 1]
Compute 𝑘 ∙ 𝑃 = (𝑥, 𝑦)
Compute 𝑟 = 𝑥 mod 𝑛

} until (𝑟 ≠ 0)

Compute 𝑒 = ℋ(𝑚)
Compute 𝑠 = 𝑘−1 𝑒 + 𝑑𝑟 mod 𝑛
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}

ECDSA

Signature generation
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Return 𝑟, 𝑠
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Def {accept,reject} = verify 𝑟, 𝑠 {
If (𝑟 < 0 or 𝑟 ≥ 𝑛 or s < 0 or s ≥ 𝑛) return reject

Compute 𝑒 = ℋ(𝑚)
Compute 𝑤 = 𝑠−1 mod 𝑛
Compute 𝑢1 = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑟𝑤 mod 𝑛
Compute 𝑋 = 𝑢1 ∙ 𝑃 + 𝑢2 ∙ 𝑄 = (𝑥, 𝑦)
If (𝑋 == 𝒪) return reject

If (𝑥 mod 𝑛 ≠ 𝑟) return reject

Return accept

}

ECDSA

Signature generation Signature verification
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ECDSA – Security 101

The value 𝑟 has the same security requirements as the private key 𝑑

We can compute 𝑘, which allows us to compute the secret key 𝑑
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ECDSA – Security 101

Terrible example

Used in 2010 to get the private key from Sony’s 

video game console PlayStation 3.

The per-message random value 𝑘 was hard-coded.

Nobody would hard-code this random value 𝑘 right?
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Fast Scalar 

Multiplications



Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

Input: 𝐺 ∈ 𝐸(𝔽𝑝) and  ℤ ∋ 𝑠 = σ𝑖=0
𝑘−1 𝑠𝑖 ∙ 2

𝑖

Output: s ∙ 𝐺 ∈ 𝐸(𝔽𝑝)

1. 𝑃 ← 𝐺
2. for (𝑖 = 𝑘 − 2; 𝑖 ≥ 0; 𝑖--) {
3. 𝑃 ← 2 ∙ 𝑃 (double)

4. if (𝑠𝑖 == 1) 𝑃 ← 𝑃 + 𝐺 (add)

5. }

6. Return 𝑃



Elliptic Curve Scalar Multiplication

In ECDSA and ECDH(E) the scalar multiplication is the most time consuming

Input: 𝐺 ∈ 𝐸(𝔽𝑝) and  ℤ ∋ 𝑠 = σ𝑖=0
𝑘−1 𝑠𝑖 ∙ 2

𝑖

Output: s ∙ 𝐺 ∈ 𝐸(𝔽𝑝)

1. 𝑃 ← 𝐺
2. for (𝑖 = 𝑘 − 2; 𝑖 ≥ 0; 𝑖--) {
3. 𝑃 ← 2 ∙ 𝑃 (double)

4. if (𝑠𝑖 == 1) 𝑃 ← 𝑃 + 𝐺 (add)

5. }

6. Return 𝑃

Many (!) optimizations possible.

Assume the scalar and point are 

random.



Example – Double-and-Add

Naïve double-add algorithm: 13D + 6A

1 10011100000

1000 10011100001

1001 100111000010

10010 100111000011

10011 10011100001100

100110 10011100001101

100111



Example – Windowing

Windowing algorithm (13D + 5A)

Precompute 𝑐𝑃 with 1 ≤ 𝑐 < 2𝑤

Assume 𝑤 = 2, compute window: {𝑃, 2𝑃, 3𝑃} (1D + 1A)

10 1001110000

1000 100111000000

1001 100111000011

100100 10011100001100

100111 10011100001101

10011100



Example – Sliding window

Sliding windowing algorithm (13D + 5A)

Precompute odd 𝑐𝑃 with 1 ≤ 𝑐 < 2𝑤

Assume 𝑤 = 2, compute window: {𝑃, 3𝑃} (1D + 1A)

1 1001110000

100 100111000000

10000 100111000011

10011 10011100001100

100110 10011100001101

100111



Example – Signed sliding window

Signed sliding windowing algorithm (14D + 5A)

Precompute odd 𝑐𝑃 with 1 ≤ 𝑐 < 2𝑤

Assume 𝑤 = 2, compute window: {𝑃, 3𝑃} (1D + 1A)

Exploit that computing negation is efficient: −𝑃 = − 𝑥, 𝑦 = (𝑥, −𝑦)

1 1001110000

100 1001110001

101 10011100010000

101000 10011100001101

100111



Are these approaches secure?

37.

Double-and-Add

Windowing

Sliding windowing

Signed sliding windowing
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Adding 𝓞?

Double-and-Add ✓

Windowing ✓

Sliding windowing 

Signed sliding windowing 
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Adding 𝓞?

Multiple 

precomputed 

points?

Double-and-Add ✓ 

Windowing ✓ ✓

Sliding windowing  ✓

Signed sliding windowing  ✓



Are these approaches secure?

40.

Adding 𝓞?

Multiple 

precomputed 

points?

Constant-

time?

Double-and-Add ✓  

Windowing ✓ ✓ 

Sliding windowing  ✓ 

Signed sliding windowing  ✓ 

Constant-time? 

Run-time is independent of the key and input to the algorithm
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Semi- / Invasive 

Attacks

Non Invasive 

Attacks

Implementation

Implementation Attacks: Overview

Cryptographically 

Secure Algorithm

Side-Channels
Power Consumption

Electromagnetic Emanation

Timing

Communication (Errors)

Heat Emanation

SCA-Attacks
Simple Power Analysis 

Differential Power Analysis

Template Attacks

Timing Analysis

Fault Injection
Laser Beam

Power- Clock Glitches

Probes

EM Pulses

Focused Ion Beam

Environmental Stress

Fault Attacks
Attacks on Algorithm

Attacks on Program Flow

Single Bit vs. Multiple Bit

Differential Fault Attacks

Secret

Misuse logical 

implementation flaws

Logical Attacks



42

Timing Attacks

• Deduce information about the secret by 

measuring runtime of program 

 example of (passive) side-channel attack 

Can be performed local or remote

• Many things can influence the timing of the 

implementation  very hard to create truly 

constant-time implementations

Start

Decision

Process 1

Process 2

End

Constant-time? 

Run-time is independent of the key and input to the algorithm



• Remote timing attacks 

(especially successful against public-key crypto)

• Local cache attacks (multi-user system)

Timing attacks: Cache attack

43.

Wikipedia: 

A write-through cache with no-write allocation

Constant-time? 

Run-time is independent of the key and input to the algorithm



• Remote timing attacks 

(especially successful against public-key crypto)

• Local cache attacks (multi-user system)

Example: FLUSH+RELOAD attack exploits a security 

weakness in the X86 architecture: monitor access to 

memory lines in shared pages

Timing attacks: Cache attack

44.

Wikipedia: 

A write-through cache with no-write allocation

Constant-time? 

Run-time is independent of the key and input to the algorithm



New developments in ECC 

and impact in practice

45.



Weierstrass curves

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Most general form

• [+] Prime order possible

• [-] Exceptions in group law

• NIST and 
Brainpool curves

Elliptic Curve Models - Summary
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invented to accelerate ECM.

✓ Regular structure

✓ Montgomery ladder very 

efficient in combination with 

Montgomery curve

✓ Small memory requirement



Montgomery ladder

✓ Montgomery curves and 

Montgomery ladder were 

invented to accelerate ECM.

✓ Regular structure

✓ Montgomery ladder very 

efficient in combination with 

Montgomery curve

✓ Small memory requirement

✓ Can be converted in constant-

time with “constant-time 

swapping” depending on 𝑛𝑖



Montgomery Curve

𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥

Cryptographic curve providing 128-bit security

Fast ECDH 

Montgomery ladder

Example: Curve25519

Curve Double Add

Montgomery 11

𝑎 = −3 short Weierstrass 9 14

1987: Montgomery curve

2005: New ECDH speed records using 

Curve25519 (Montgomery curve)



Montgomery Curve

𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥
Twisted Edwards curve

−𝑥2 + 𝑦2 = 1 −
121665

121666
𝑥2𝑦2

Cryptographic curve providing 128-bit security

Fast ECDH 

Montgomery ladder
Fast ECDSA 

twisted Edwards arithmetic

Example: Curve25519

Curve Double Add

Montgomery 11

𝑎 = −1 twisted Edwards 7 8

𝑎 = −3 short Weierstrass 9 14

1987: Montgomery curve

2005: New ECDH speed records using 

Curve25519 (Montgomery curve)

2008: 𝑎 = −1 twisted Edwards curve

2011: EdDSA new digital signature 

speed records
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▪ Implement group law, counter measures etc. once. 

▪ If new curves are proposed no need to change implementation.
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Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve

“One curve model to rule them all”

▪ Implement group law, counter measures etc. once. 

▪ If new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume
• prime order [ almost always assumed ] 

• short Weierstrass curves [ always assumed ]

• with curve parameter a = −3 [ not widely assumed? ]

Historically this makes sense: 

Standard curves 𝐸(𝐅𝑝) with 𝑝>3 prime have these three properties

For instance see: 

o NIST, FIPS 186-4, App. D: Recommended Elliptic Curves for Government Use

o SEC 2: Recommended Elliptic Curve Domain Parameters*

(* Except the three Koblitz curves secp192k1, secp224k1, secp256k1, where 𝑎 = 0)

Practice - Backwards compatibility
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• prime order [ almost always assumed ]

❖ This rules out (twisted) Edwards / Montgomery curves

❖ Need additional code to avoid small-subgroup attacks
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Existing hardware / software implementations might assume
• prime order [ almost always assumed ]

❖ This rules out (twisted) Edwards / Montgomery curves

❖ Need additional code to avoid small-subgroup attacks

• short Weierstrass curves [ always assumed ]

One curve model to rule them all: not a problem

• with curve parameter a = −3 [ not widely assumed? ]

One can transform 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 to an isomorphic 𝑦2 = 𝑥3 − 3𝑥 + 𝑏′

if and only if there exists 𝑢 ∈ 𝐅𝑝
∗ such that 𝑢4 = 𝑎/−3 and 𝑢6 = 𝑏/𝑏′

Practice - Backwards compatibility



Zero value / low-torsion attacks
These new curve models have an efficient complete group law.

Any disadvantages?



Idea, focus on points with a zero 

coordinate

• zero-coordinate (Goubin’s attack)

• zero-value [Akishita, Takagi]

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Zero value / low-torsion attacks
These new curve models have an efficient complete group law.

Any disadvantages?



Is this a problem for software implementations?

Idea, focus on points with a zero 

coordinate

• zero-coordinate (Goubin’s attack)

• zero-value [Akishita, Takagi]

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Zero value / low-torsion attacks
These new curve models have an efficient complete group law.

Any disadvantages?

• Weierstrass: (𝑥, 0) does not exist when using prime order curves.

• 𝑎 = −1 twisted Edwards: 4-torsion exists



Is this a problem for software implementations?

Yes

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Zero value / low-torsion attacks

• Flush-and-reload + 4-torsion + modular reduction code 

 attack possible, torsion points make things more complicated!

• See ECC Workshop on Monday for more details

May the Fourth Be With You: A Microarchitectural Side Channel

Attack on Several Real-World Applications of Curve25519

By Daniel Genkin
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Example: EdDSA

64.

On many platforms sampling “good” random data is 

• non-trivial 

• insufficient entropy is available

Predictable nonce  extraction of private key



Example: EdDSA

65.

• Edwards-curve Digital Signature Algorithm (EdDSA)

• Variant of a Schnorr signature 

• Deterministic signature



Example: EdDSA

66.

• Public key is point 𝐴 (= sB)

• Secret key is 𝑘, where 𝑠 = 2𝑛 + σ𝑐≤𝑖<𝑛 2
𝑖ℎ𝑖 and ℋ 𝑘 = (ℎ0, ℎ1, … , ℎ2𝑏−1)

• Solves the getting “good” RNG problem, always better?
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• Temporal switch to higher 

(or lower) voltages 

• Optical fault injection

The next level: moving from passive to active attacks
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Differential Fault Analysis

69.

Fault attack

• Clock glitches

• Temporal overclocking

• Voltage spikes

• Temporal switch to higher 

(or lower) voltages 

• Optical fault injection

Controlled or uncontrolled fault

Controlled fault  inject a fault in a 

target memory range.

For instance, flipping a bit in a byte, 

word or any range.

DFA: use the difference between a faulty and a correct result to 

determine information about the secret key used

The next level: moving from passive to active attacks
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Example: EdDSA

72.

• Most time-consuming operation is the 

elliptic curve scalar multiplication.

• Introduce a fault during the operation

 Change the outcome of the operation

DFA approach

𝑆 − 𝑆′ ≡ 𝑠 𝑡 − 𝑡′ mod ℓ
 One equation with one unknown

 compute 𝑠 and check if correct using 𝐴 = 𝑠𝐵



Example: EdDSA

73.



Example: Deterministic ECDSA

74.
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• In general: DFA countermeasures are expensive.
• Compute twice and compare

• What about a hybrid approach? Use either 

𝑟 = ℋ(ℎ𝑏, … , ℎ2𝑏−1, 𝑚
′) or 𝑟 = ℋ 𝑅, ℎ𝑏, … , ℎ2𝑏−1, 𝑚

′

Where 𝑅 is high-quality randomness.
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• In general: DFA countermeasures are expensive.
• Compute twice and compare

• What about a hybrid approach? Use either 

𝑟 = ℋ(ℎ𝑏, … , ℎ2𝑏−1, 𝑚
′) or 𝑟 = ℋ 𝑅, ℎ𝑏, … , ℎ2𝑏−1, 𝑚

′

Where 𝑅 is high-quality randomness.

Potential countermeasures

77.

Advantages

✓ Improved protection on platforms where DFA is a threat

✓ No change to

✓ Implementations which are not concerned with DFA

✓ Key generation and signature verification algorithms

However, no longer a deterministic signature scheme.



• Implementing elliptic curve crypto is fun,
• Creating fast / small implementations is a nice challenge

New developments in ECC (Curve25519) are fast but not backwards compatible.

• Creating a “secure” implementation is very hard

• What does secure mean?
• Timing attacks? Cache attacks?

• Other passive attacks? (e.g. power)

• Active attacks  fault injections?

• A lot of opportunity for things to go wrong  in practice
• Protocol level

• Algorithm level

• Implementation level

This is what makes this field so much fun!

Conclusions

78.




