Introduction to Magma

Wieb Bosma and John Cannon

Radboud University Nijmegen and University of Sydney

School ECC2017, Nijmegen, November 2017

PART 1

Foundations

Foundations

Magma is designed to support computation in branches of
mathematics that borrow heavily from algebra.
Some initial areas of application include:-

» Algebra

» Number theory

» Algebraic geometry

» Lie theory

» Algebraic combinatorics
» Algebraic topology

» Application areas that make heavy use of algebra: e.g.,
applied graph theory, coding theory, cryptography.

Foundations

The first step was to design and implement a framework for
efficiently computing with the structures of modern algebra.

Examples: Groups, rings, fields, modules, ...
This foundation would then provide a basis for computing with a

wider class of structures that are defined largely in terms of
algebraic structures.

Examples: Geometric varieties, incidence structures, ...

Foundations

We need:

» Atype system
» A domain-specific programming language.

» Algorithms for each class of structures installed.

The type system is based on the key objects of modern
algebra: algebraic structures and morphisms.

ldeas from universal algebra provide a framework.

Basic Requirements

‘Mathematical’ aggregate data structures, such as
magmas, sets, sequences and mappings, should be used.

The specification of mathematical objects and their
attributes are to be precise and unambiguous.

The semantics associated with each object definable in the
language is to be as close as possible to the standard
mathematical interpretation.

The user language should support common mathematical
notation as far as possible.

Efficiency is to be a paramount concern.

Characteristics of the Magma Language

The Magma language is an imperative programming language
having standard imperative style statements and procedures.

The language has a functional subset providing functions as
first class objects, higher order functions, partial evaluation, etc.

Constructors are used to specify magmas, elements of
magmas, mappings and aggregates (sets, sequences, records
etc.).

Much of the power of the language derives from its
constructors.

PART 2

Magmas and their Construction

Magmas

From the mathematical viewpoint we have a hierarchy of
objects:

1.

A class of abstract structures V defined by a common set
of axioms. This is called a variety. Eg a module.

A concrete realisation of some subclass of A. We call this
a category and denote it by C . Eg the class of all finite
dimensional vector spaces.

A particular structure A of C which we call a magma.
Eg a particular finite dimensional vector space.

In general the definition of a magma A involves one or
more carrier sets. In the case of a vector space there is
one set, the set of elements (or vectors).

Magmas

In general a magma can be constructed from some free or
universal magma by means of a chain of submagma, quotient
magma and extension operations.

Elements of the carrier set(s) of a magma M have M as their
parent.

Each individual magma created during a run defines a separate
type in the programming language sense.

Construction of Magmas
Free or universal magmas:-

» VectorSpace (field, degree)
» PolynomialRing (ring, num indets)

» MatrixAlgebra (ring, degree)
Derived magmas:-

» VectorSpace<field, degree | generators>
» MatrixAlgebra<ring, degree | generators>

» Graph< num vertices | edges >
Magmas created by intrinsics:-

» FiniteField (cardinality)
» NumberField (field, polynomial)

» EllipticCurve (curve, bpoint)

Construction of Magmas (cont)

Forming submagmas, quotients or extensions of magmas:

» sub< magmaM | submagma of M>
» quo< magmaM | submagma of M>
» ext< magmaM | extension data>

quo< M | ... > returns the quotient magma Q of M and
the natural epimorphism.

sub< M | ... > returns the submagma and the inclusion
monomorphism.

Example: Tower of Finite Fields

> K<u> := GF(3); K;
Finite field of size 3

> R<x> := PolynomialRing (K) ;
> L<v> = ext< K | x™3 + 2*«x + 1 >; L;
Finite field of size 373

> S<y> PolynomialRing (L) ;
> M<w> ext< L | y"2 + vxy — 1 >; M;
Finite fleld of size 376

> u + vh8 + vr19xw + v*12;
vr19xw + 2

Element Constructors

» elt< magma | expry, ..., exprx >

» magma | [expry, ..., exprg |

Example: Vector space

> V := VectorSpace (Rationals (), 3);
>vl :=Vv ! [1, 1/2, 1/3 1; vl;

(11/2 1/3)

> Parent (vl);

Full Vector space of degree 3 over Rational Field
> v2 =V ! [4/5, 2, 3 1;

> vl + v2;

(9/5 5/2 10/3)

U := sub< V | vl, v2, 3*vl - v2 >;
Dimension (U) ;

2

Element Constructors (cont)

Example: Treat the finite field G = F512 as a 4-dim vector space
V over F = Faas.

> G<g> := FiniteField (3, 12);
> F<f> := FiniteField (3, 3);
>V, v := VectorSpace (G, F);
>V, v;

Full Vector space of degree 4 over GF (373)
Mapping from: FldFin: G to ModTupFld: V

Note that the map v from G to V, is also returned,

>e =V ! [£, £711, £72+f+1, 7]1; e;
(f £211 f£76 1)

> e (@@ vy

g~86726

> £ + £r11xg + (£72+4£+41)%g 2 + T+g”~3;
86726

PART 3

Aggregate Datatypes

Homogeneous Aggregate Constructors

» {} Set: homogeneous, finite, unordered,
no duplicates, fast € test

» {**} Multiset: homogeneous, finite, unordered, fast € test

» {@ @} Indexed set: homogeneous, finite, ordered, no
duplicates, fast € test

» {I'} Formal set: homogeneous, unordered, no duplicates,
€ test via predicates

» [1 Sequence: homogeneous, finite, ordered, fast
indexed access

v

Heterogeneous Aggregate Constructors

[« =] List: inhomogeneous, finite, ordered
< > Tuple: inhomogeneous, finite, ordered
rec< > Record:inhomogeneous, finite

— Associative arrary: inverted table

Set Constructor

The general set constructor has the form:
{Ule:xInE|P}

v

U is the common parent for all elements

» e is an expression involving the (local) parameter x which
ranges over the magma (or set or sequence) E

E is a set which defines the desired set

v

v

P is a predicate usually involving x that filters the elements
being selected

Sequence Constructor: Example

N o= [1;
n := 2;
while n 1t 1000 do
n +:=1;
if &+Divisors(n-1) eq &+Divisors(n+l) then
Append (~N, [n, #Factorization(n)]);
end 1if;

end while;

N := [[n, #Factorization(n)]: n in [2..1000]
&+Divisors (n-1) eq &+Divisors(n+l) 1;

Set Constructor: Example

> T = {<x,y,2>: X,y,z in [1..100] |
> x"2 + y*2 eq z72};

It's really only necessary to let x and y iterate over [1..100].
T := {<x,y,Isqrt(x"2 + y*2)>:

X,y in [1..100] |
IsSquare (x*"2 + y72)};

vV V V

It's annoying to have to type x2 + y? twice, so we introduce the
where expression:

> T := {<x,y,Isgrt(w)>: x,y in [1..100] |
> IsSquare (w) where w is x"2 + y"2};

Set Constructor Example (cont)

Still too many uninteresting solutions: try harder.

> T := [<x,y,Isqgrt (w)>:

> y in [x..100], x in [1..1007 |
> GCD (x, y) eqg 1 and IsSquare (w)
> where w is x"2 + y"2];

> T;

[<3, 4, 5>, <5, 12, 13>, <7, 24, 25>,

<8, 15, 17>, <9, 40, 41>, <11, 60, 61>,
<12, 35, 37>, <13, 84, 85>, <16, 63, 65>,
<20, 21, 29>, <20, 99, 101>, <28, 45, 53>,
<33, 56, 65>, <36, 77, 85>, <39, 80, 89>,
<48, 55, 73>, <60, 91, 109>, <65, 72, 97>]

Mappings
A mapping f : A— B:

map< expry —> expr. | graph >

A partial mapping f : A — B:
pmap< expry —-> expr. | graph >

A homomorphism f : A — B, where A and B are magmas:
hom< expr; —-> expr, | graph >

An isomorphism f : A — B, where A and B are magmas:

iso< expry —> expr. | graph >

PART 4

Standard Magmas & their Algorithms

Standard Magmas & their Algorithms

Installing a new family F of objects (magmas) involves:-

» Deciding on a suitable computational representation for
members of F.

» Implementing constructions for F.

» |ldentifying a basic set of operations which are likely to be
needed when computing with members of F.

» Developing and implementing efficient algorithms for
performing operations.

The vast majority of our effort goes into developing or improving
algorithms.

Structures: Rings and Fields

Commutative rings: Polynomial rings, graded rings, ideals, affine
algebras, Galois rings.

Fields: Q, number fields, function fields, class fields, Galois
fields, and algebraically closed fields.

Local fields: p-adic and local fields; power series, Laurent series
rings and Puiseux series; valuation rings; R and C.

Modules: Vector spaces, R-modules (R a field, Euclidean ring,
order of a field), Hom-modules, homological algebra, tensors
and multilinear functions.

Lattices: Integral lattices, lattices over number fields, Lorentz
lattices, quadratic forms, binary quadratic forms.

Structures: Groups and Algebras

Groups: Permutation groups, matrix groups, finitely-presented
groups, abelian groups, soluble groups, (infinite) polycyclic
groups, automatic groups, braid groups.

Lie theory: Root systems, Coxeter groups, reflection groups, Lie
groups, finite groups of Lie type, Lie algebras, algebras,
quantum groups.

Associative Algebras: General fd associative algebras, finitely
presented algebras, matrix algebras, group algebras, basic
algebras, quaternion algebras, Clifford algebras.

Non-Associative Algebras: General algebras, Lie algebras,
composition algebras, octonian algebras, Jordan algebras.

Representation theory: A-modules (A an algebra), KG-modules
(G afinite group); representations of finite groups, Lie groups
and Lie algebras;

Structures: Geometry and Number Theory

Geometry: Convex polytopes and polyhedra, incidence and
coset geometries, finite planes.

Algebraic geometry: Schemes, coherent sheaves, algebraic
curves, algebraic surfaces, toric varieties.

Arithmetic geometry: Conics, genus 1 curves, elliptic curves,
hyperelliptic curves and their Jacobians, some families of
surfaces.

Modular forms: Modular curves, modular forms, Hecke modules,
Brandt modules, modular abelian varieties, Hilbert modular
forms, modular forms over imaginery quadratic fields,
congruence subgroups of PSL(2, R).

L-functions and Galois representations: Dirichlet and Hecke
characters, L-functions, hypergeometric motives, Artin
representations, local Galois representations, admissible
representations of GL»(Qp).

Structures: Codes, Combinatorics

and Numerical Computing

Combinatorics: Enumerative combinatorics, partitions and
Young tableaux, symmetric functions.

Incidence structures: Graphs, multigraphs, networks, incidence
structures, designs, finite planes, Hadamard matrices.

Coding theory. Codes over finite fields, codes over finite rings,
AG-codes, LDPC codes, additive codes, quantum codes.

Arbitrary precision numerical evaluation of standard functions:
Trigonometric and transcendental functions; elliptic and modular
functions; theta functions, etc.

Arbitrary precision numerical linear algebra: RQ- and
QL-decomposition; rank, kernel, inverse, pseudoinverse of a
matrix; eigenvalues and singular value decomposition of a
matrix; solution of systems of linear equations.

Magma Information

» Caching Attributes: When a user invokes an intrinsic that
computes a property of a magma, it will normally store the
result as part of the magma'’s record. This avoids possibly
expensive recomputation upon subsequent requests.

» Asserting Attributes: In many cases the user can assert
such an attribute in advance and so avoid computing it
anew on every run. This can save a great deal of time in
subsequent runs.

» Magma Relationships: 1t is frequently the case that, given
a magma M, other magmas related to M are constructed.
To keep track of these relationships a global table is
maintained.

Mathematical Databases

» Magma includes about 50 databases (tables) of
mathematical objects.

» Typically, such a database contains a complete
classification of all structures of some given type up to a
specified bound.

» A number of these databases are an integral part of
algorithms installed in Magma. For example, factorisation
of the integers 2" + 1 can be sped up enormously if
information for that value of nis stored in the tables.

A few of the databases are listed below.

Geometry and Topology

Cremona database of Elliptic Curves: All isogeny
classes of elliptic curves having conductor up to 400,000.

Stein-Watkins Database of Elliptic Curves: The
Stein-Watkins database of 136,924,520 elliptic curves of
conductor up to 108.

K3 Surfaces: This comprises a collection of 24,099 K3
surfaces.

3-folds: Machinery allows the user to generate lists of
Fano 3-folds and Calabi—Yau 3-folds.

Fundamental Groups of 3-manifolds: The 11,126
small-volume closed hyperbolic manifolds of the
Hodgson-Weeks census.

Number Theory

Cunningham Factorizations: Contains 237,578 factors f
of numbers a" £+ 1, where a < 10000, n < 10000, and
f>10°.

Irreducible polynomials: Sparse irreducible polynomials
over GF(2) for all degrees up to 23,030.

Conway polynomials: Conway polynomials for F, to
F27.

Galois Polynomials: For each transitive group G with
degree between 2 and 15, the database contains a
univariate polynomial over the integers which has G as its
Galois group.

Sloane-Nebe Lattices: The lattices of Sloane and Nebe,
containing the automorphism group and ©-series for many
examples.

Group Theory

Small Groups: All groups of order up to 2000, except
order 1024

The ATLAS Database: Representations of nearly simple
groups.

Almost Simple Groups: Almost simple groups stored with
their automorphism groups and maximal subgroups.

Perfect Groups : Perfect groups of order up to a million.

Transitive Groups: Transitive permutation groups of
degree up to 47.

Primitive Groups: Primitive groups of degree up to 4000.

Group Theory (cont)

Irreducible Matrix Groups: Irreducible subgroups of
GL(n, p) where pis prime and p" < 2499.

Irreducible Soluble Groups: The irreducible soluble
subgroups of GL(n, p) for n > 1 and p" < 256.

Finite Groups of Rational Matrices: The maximal finite
subgroups of GL(n, Q), for nup to 31.

Quaternionic Matrix Groups: The finite absolutely
irreducible subgroups of GL,(D) where D is a definite
quaternion algebra whose centre has degree d over Q.

Incidence Structures and Codes

Simple Graphs: An interface to the graph enumeration
code of Brendan McKay which allows the user to rapidly
construct all simple graphs on a given number of vertices.

Strongly Regular Graphs: A database containing a list of
strongly regular graphs.

Hadamard Matrices: All inequivalent Hadamard matrices
of degree at most 28, and examples of matrices of all
degrees up to 256.

Skew Hadamard Matrices: Known skew Hadamard
matrices of degree up to 256.

Best Known Binary Linear Codes: The best known
linear codes over F, of length up to 256.

Best Known Ternary Linear Codes: The best known
linear codes over F3 and F4 of length up to 100.

PART 5

Elliptic Curves

Elliptic Curves

Magma has support for elliptic curves over a wide variety of
structures. Four Handbook sections (Arithmetic Geometry):

» Elliptic Curves,
» Elliptic Curves over Finite Fields
» Elliptic Curves over Q and Number Fields

» Elliptic Curves over Function Fields
We will have a closer look at these next.

Documentation and other Sources

v

W. Bosma, J. Cannon, C. Fieker, and A.Steel: The Magma
Handbook, Thirteen Volumes, 5800 pages, Version 2.22,
May 2016.

v

J. Cannon and C. Playoust: First Steps in Magma, 16
pages

v

G. Bailey: Appendix: The Magma Language, In DMWM,
pp 331-356.

v

W. Bosma, J. Cannon (Editors): Solving Problems with
Magma, 220 pages.

v

W. Bosma, J. Cannon (Editors): Discovering Mathematics
with Magma (DMWM), Springer, 2006.

All to be found at:
http:
//magma.maths.usyd.edu.au/magma/documentation/

http://magma.maths.usyd.edu.au/magma/documentation/
http://magma.maths.usyd.edu.au/magma/documentation/

