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Introduction

Consequence of Bézout’s theorem: on a cubic curve
C:f(oy) =Xiyj=3ajx'y’ =0,
new points can be constructed from known points using tangents and chords.

fl,y) =0

This principle was already known to 17t century natives like Fermat and Newton. Isaac Newton



Introduction

This construction was known to respect the base field.

This means: if f(x,y) € k[x, y] with k some field, and one starts from points having coordinates in
k, then new points obtained through the tangent-chord method also have coordinates in k.

Informal reason:

Consider two points on the x-axis P; = (a,0) and P, = (b, 0).
Then the “chord” isy = 0.

The intersection is computed by f(x,0) = (x —a) - (x — b) - linear factor

1

always has a root over k!



Introduction

Thus: tangents and chords give some sort of composition law on the set of k-rational points of a
cubic curve.

Later it was realized that by adding in a second step, this gives the curve an abelian group structure!
(8 only after an incredible historical detour which took more than 200 years...

commutativity:
Pi+P,=P,+ P,
associativity:
(P +Py)+P; =P+ (P, +P3)
neutral element:
P+0=P
inverse element:
3(-P): P+ (—P) =0

Henri Poincaré

First formalized by Poincaré in 1901.



Introduction

Conditions for this to work:
1) One should work projectively (as opposed to affinely):

Homogenize
f(x; Y) = Zi+j=3 a’ijxiyj to F(x, Y, Z) = Zi+j=3 aijxiyjz3—i—j
and consider points (x:y:z) # (0:0:0), up to scaling.

Two types of points:

4 —
affine points points at infinity
z # 0: the point is of the form (x:y: 1) z = 0: points of the form (x: y: 0) up to scaling.

But then (x, y) is an affine point! (Up to three such points.)



Introduction

Conditions for this to work:

2) The curve should be smooth, meaning that

has no solutions.

This ensures that every point P has a well-defined tangent line

oy v+ Py v+ P, =
T : 6x(P) x+ay(P) y+aZ(P) z = 0.




Introduction

Conditions for this to work:

3) O should have coordinates in k, in order for the arithmetic to work over k.

Definition: an elliptic curve over k is a smooth projective
cubic curve E [k equipped with a k-rational base point O.

(Caution: there exist more general and less general definitions.)

Under these assumptions we have as wanted:
Tangent-chord arithmetic turns E into an abelian group with neutral element O.
The set of k-rational points E (k) form a subgroup.



Exercises

1) Describe geometrically what it means to invert a point P, i.e. to find a point —P such that

P+ (-P) = 0.

2) Why does this construction simplify considerably if O is a flex (= point at which its tangent line
meets the curve triply)?

3) If O is a flex then
3P:=P+ P+ P =20ifandonlyif P is a flex.

Explain why.



On the terminology
“elliptic curves”



On the terminology

In the 18t century, unrelated to all this, Fagnano and Euler revisited the unsolved
problem of determining the circumference of an ellipse.

%Q’x
[

They got stuck on difficult integrals, now called elliptic integrals.

Leonhard Euler



On the terminology

In the 19" century Abel and Jacobi studied the inverse functions of elliptic integrals.

[\2*2 t=f(s)?
1 dy

When viewed as complex functions, they observed
t dx doubly periodic behaviour: there exist w;, w, € Csuch g
So 1 —x* that 4

fz+Aw;+2A,w,) =f(z) foralld, 1, €Z.

Compare to: sin(x + A1 - 2km) = sin(x) for all A € Z, etc.

Such generalized trigonometric functions became known as elliptic functions. Carl G. Jacobi



On the terminology

In other words: elliptic functions on C are well-defined modulo Zw{ + Zw,.

Mid 19t century Weierstrass classified all elliptic functions for

® any given w4, w-, and used this to define a biholomorphism
o C/(Zwi + Zwy) = E:z = ($(2), $'(2))
° to a certain algebraic curve E...
... which he called an elliptic curve!
o

Note that C/(Zw{ + Zw-) is st by definition.

The biholomorphism endows group structure...
... Where it turns out to correspond to tangent-chord arithmetic! Karl Weierstrass



Weierstrass curves and
their arithmetic



Weierstrass curves =0 70 = (0:1:0)

The concrete type of elliptic curves found by Weierstrass

now carry his name. They are the most famous shapes of
elliptic curves.

Assume char k # 2,3.

Definition: a Weierstrass elliptic curve is
defined by

vy’ =xt3HA4kx*HBB 7>

where A, B € k satisfy 443 + 27B% # 0.
The base point O is the unique point at
infinity.

Can be shown: up to “isomorphism” every elliptic curve is Weierstrass. (typical plot for k = R)



Weierstrass curves

y)

Note:

1) the lines through O = (0:1:0) are the
vertical lines (except for the line at infinity
z = 0).

2) The equation y? = x3 + Ax + B is
symmetric in y.

This gives a first feature: inverting a point on a
Weierstrass curve is super easy!

Indeed: if P = (x, y) is an affine point then

—P = (X, _y)



Weierstrass curves

What about point addition?

A
W,

P, + P,

Write P]_ + Pz — (xg,y3).

Line through P; = (x4, y1) and P, = (x5, y5) is

__Y2=V1
xz—x1'

y—vy; =A(x —x;) where A

Substituting y <« y; + A(x — x;) in the curve
equation x3 + Ax + B —y? = 0:

2
x3 + Xt B — PR Hx) w)) = 0.
So, sum of the roots is A2. But x4, x, are roots!

x3=/12—x1—x2

We find:
{}’3 = —y; — A(x3 — x1)



Weierstrass curves

-
0
where A = 22722 |
X2—X1 4
But what if x; = x,?
P —]
P,
Two cases:
Eithery, =y, #0,i.e. P =P, = P. .
In this case we need to replace A by
1= 3x2+2Ax, P,
2y;
Or y; = —V,, in which case P; + P, = O. 2P
=A% —x; —x,

. X3
Conclusion: formulas for computing on a Weierstraé@/%tfl'@@arép

ot _toc bad,/llwt casjglglstmctlve



More efficient elliptic curve arithmetic?

The Weierstrass addition formulas are reasonably good for several purposes...

... but can they be boosted? Huge amount of activity starting in the 1980’s.

One reason:
Koblitz and Miller’s suggestion to use elliptic curves in crypto!

agreeon E/F, and P € E(F,)

chooses secreta € Z chooses secret b € Z %
cocepuees aP ceceiwees bP © W
computes a(bP) = abP computes b(aP) = abP {5

(Example: Diffie-Hellman key exchange.)

Initial reason:
Lenstra’s elliptic curve method (ECM) for integer factorization.

Victor Miller

Neal Koblitz



Generic methods for efficient
scalar multiplication



Efficient scalar multiplication

The most important operation in both

(discrete-log based) elliptic curve cryptography,
the elliptic curve method for integer factorization,
is scalar multiplication: given a point P and a positive integer a, compute

aP =P+P+--+P

a times.

Note: adding P consecutively to itself a — 1 times is not an option!

/

in practice a consists of hundreds of bits!



Efficient scalar multiplication: double-and-add

Much better idea: double-and-add, walking through the binary expansion of a.
Toy example: replace the 15 additions in
l1eP=P+P+P+P+P+P+P+P+P+P+P+P+P+P+P+P

by the 4 doublings in

16P = 2 (2(2(2P))).
General method:

a=101100010...0101 2 (2 (ZZ

T

Exercise: yerif @%deputes aP using O (log a) additions or doublings, as opposed to O(a).
(Horner’s rule, basically.)




Efficient scalar multiplication: double-and-add

Asymptotically this is as good as we can expect...

... but in practice, considerable speed-ups over naive double-and-add are possible!

Example: double-and-add computes 15P as
P,2P,3P,6P,7P,14P,15P.
However it would have been more efficient to compute it as

P,2P,3P,6P,12P,15P

very difficult combinatorial problem.

c Warning: finding the most optimal chain of additions and doublings to compute aP is a
We don’t want to spend more time on it than on computing aP itself!




Efficient scalar multiplication: windowing

In double-and-add, processing a 0 (doubling) is less costly than processing a 1 (doubling and adding P).
Is there a structural way of reducing the number of additions?

One idea to achieve this: windowing, which is the same as double-and-add, but we now process
blocks (= windows ) of w bits in one time.

Example with w = 2:

a = 101100010...0101 4(4444ZBRP-3PD) + P

I

Requirds R rOmBUtS 9P ... 2¥-1P which grows exponentially with w.

Method can be spiced up by allowing the window to slide to the next window starting with a 1.



Efficient scalar multiplication: signed digits

Recall that on a Weierstrass elliptic curve, inverting a point is quasi cost-free:
—(x,y) = (x,—y).

|ldea: use negative digits in the expansion, at the benefit of having more 0’s.

The non-adjacent form (NAF) of an integer a is a base 2 expansion

-> with digits taken from {—1,0,1}
-> in which no two consecutive digits are non-zero.

Such an expansion always exists, is unique, and easy to find.

4=100-10-1010..01001 zég(

IRARAAL

This niletthSéaiiisouitpniotitidd windowing version (w-NAF).

: : 7 e
NI iy i)
\\ S

0D-m)-) o2



Efficient scalar multiplication
Tons of variations to the foregoing ideas have been investigated and proposed.
Some examples (far from exhaustive!):
Work with respect to base 3 and use an expansion with digits € {—1,0,1}.
(Requires a tripling formula.)

If P has a known finite order n, check if a + An has better properties for some small 4 € Z.

Multi-exponentiation: efficient methods for computing a Z-linear combination };; a; P;.

Exercise: find a smarter way to compute aP + bQ than first computing aP, bQ separately.



Caution with double-and-add and its variants

When working through the digits of the scalar [,/ ;I ) | f — ‘/k@;f e
— f | ;___7:,_[ ‘l ‘ == — :-——j P .',/'"}".._ ' /V =
a=110100110101100010...1110, klj‘ ‘ ;ylj"l I LJ/}Q}«[ A
an attaCker m'ght notice differences between e .

processing a 0 and processing a 1. Parameters he can monitor are time, power consumption, noise, ...

If one is uncareful then this will give away a for free!
Huge threat, unless a is public anyway (as in signature verification).

Countermeasures:

Adding unnecessary computations, using uniform addition formulas, ...

but the problem is somewhat inherent to double-and-add.

Use a Montgomery ladder for scalar multiplication.



Elliptic-curve-specific
speed-ups



Using projective coordinates

Remember the addition resp. doubling formula for Weierstrass curve arithmetic:

3x2+2Ax4

Y _
X3 = AT =X =X where 1 = 22 resp. 1 =
Y3 = —y1 — A(x3 — x1) X27X1 21

Each step in the addition/subtraction chain requires a computation of A, which involves a costly
field inversion.

Way around: use projective coordinates, computing
P; = (x3:y3:23) from Py = (x1:y1:27) and P, = (X5: y5: Z5).
Resulting formulas are inversion-free and even less case distinctive!

At the end of the double-and-add iteration, we can do a single inversion of the z-coordinate to find
a point of the form (x,y) = (x:y: 1), as wanted.



Using projective coordinates

Remember the addition resp. doubling formula for Weierstrass curve arithmetic:

2
Xa=A°—XxX1 — X — 3x2+2Ax
3 1 e where 1 = 222 regp, } = =01
Y3 = —y1 — A(x3 — xq) X2—X1 2Y1

Each step in the addition/subtraction chain requires a computation of A, which involves a costly
field inversion.

. . X X
Formulas for this are easy to establish: replace x; « Z—l,yl — %,xz «— Z—z,yz — % and put on
1 1 2 2
common denominators. For example in the case of addition this gives:
_ 2 3. . 3
Py = (X221 — x122) (V221 — Y122)“ 2125 — (X321 + X123) (X221 — X122)°0 o (X221 — X122)°2123).

Looks ugly, but is more efficient!

Literature contains various clever ways of evaluating these formulas efficiently.
Useful other types of homogeneous coordinates (e.g. weighted).



Other formulas

The formulas for addition and doubling on a Weierstrass curve are not unique. Using the identities
2 _ .3 2 _ .3
yi =x1 +Ax;+B and y; =x; +Ax, + B,

it is possible to rewrite them.

One possibility: obtain a single formula that works for both addition and doubling! Interesting
against side-channel attacks. Example:

fx _ (xyx, — 24)x1x5 — 4B(x1 + x5) + A?
< 3 (xle + A)(Xl + xz) + 23’13’2 + 2B

Vs = X1, (1 + x3) — x3((xg + %)% — %1%, + A) — y1, — B
L > Y1t

Remark: new exceptional point pairs will appear, but they are less likely to be hit by an
addition/subtraction chain.



Other curve shapes

Weierstrass curves are not the only shapes of elliptic curves that have been studied! Among them
other cubics: Hessian curves, Montgomery curves, ...

But it’s worth even leaving the realm of cubics! Annoying feature for this talk: arithmetic is no
longer using tangents and chords.

Most prominent example: if char k # 2 then we can consider the (twisted) Edwards curves
ax? +y? =1+ dx?y?

where a,d € k satisfy ad(a — d) + 0 and O = (0,1). It admits the amazing addition formula

X1Y2 T Y1X2  Y1Y2 — AX1X;
(x1»Y1)+(x2,Y2)=< . - -2 - >,

1+ dxixy1y, 1 — dx1x51 Y7

which are very efficient and can be used for doubling as well (uniformity).



Other curve shapes

A priori annoying aspect of Edwards curves: there are two singular points at infinity, each of which
secretly corresponds to two points on the complete non-singular model.

! But in fact this is a feature!

If a is a non-zero square and d is a non-square,
then these four points are not defined over k.

Therefore they are never encountered during
arithmetic over k, or in other words we have
an entirely affine group structure.

Moreover, the addition formula is complete in
this case, i.e. it has no exceptional points.




x-coordinate only arithmetic and the Montgomery ladder

As we have observed earlier:
P and Q have the same x-coordinate & P =40

Therefore the x-coordinate of aP only depends on the x-coordinate of P, so it should be possible
to compute it without any involvement of y-coordinates.

Problem: every double-and-add routine involves addition steps, and there the idea breaks down:
x(P) and x(Q) do not suffice to find x(P + Q).



x-coordinate only arithmetic and the Montgomery ladder

But it js true that x(P + Q) is determined by x(P), x(Q) and x(P — Q).

Montgomery found a way to exploit this: recursively compute

x(aP),x((a+1)P) from x (E‘ P) ,x((E‘ + 1) pP)

using one doubling and one appropriate addition. Note that x(P) is known.

Very fast.

Very uniform: good against side-channel attacks.

Possible to recover the y-coordinate from the end result (Lopez-Dahab).
Comes in projective version: coordinates (x:z) € P1(k).

Montgomery chose a more efficient curve form: By? = x3 + Ax? + x

Peter L. Montgomery



Questions?



