
Supersingular isogenies Magma tutorial: ECC 2017

Craig Costello

craigco@microsoft.com

1. Choose a prime p between 50 and 100 and construct the field Fp2 . Define the set super js

as the empty set. Now write a for loop that loops over all possible j ∈ Fp2 ; inside the loop,
use Magma’s EllipticCurveFromjInvariant find an elliptic curve E that represents the iso-
morphism class with that j-invariant. Use Magma’s IsSupersingular function to test if E is
supersingular, and if so, use the syntax Include(∼ super js, j) to include j in the set (also
print the group order for each such supersingular curve).

(a) How many supersingular isomorphism classes are there? Does this agree with the theorem
(#Sp2 = bp/12c+ b where b ∈ {0, 1, 2}) from the slides?

(b) Find a p in the interval for each b ∈ {0, 1, 2}. You may need to use IrreduciblePolynomial(Fp2,2)
to construct Fp2 , depending on your prime p.

(c) What is the group order for each supersingular curve. How does this relate to p?

2. Choose your favourite prime p between 100 and 200 such that p ≡ 3 mod 4.

(a) Using Magma to assist you (and the code written in the previous question), write down
the set Sp2 , i.e., the set of j-invariants corresponding to isomorphisms in the supersingular
isogeny class.

(b) Each curve in this class will have three points of exact order 2. Use them and Magma’s
IsogenyFromKernel function to draw (by hand) the 3-regular directed regular graph
X(Sp2 , 2), i.e., the 2-isogeny graph.

3. Now let’s do some SIDH key exchange.

(a) Write a loop to find your favourite SIDH-friendly prime p = 2eA ·3eB−1, where 2eA ≈ 3eB ,
e.g., where α = log 3eB/ log 2eA is such that 0.9 < α < 1.1, and p is at least 500 bits. Define
E0/Fp2 : y2 = x3+x and assert that this curve is supersingular. Print AbelianGroup(E0)
to see its group structure, and determine the maximum order of any point in E0.

(b) We want to find (and fix) two public points PA and QA, such that both have order 2eA

and such that they form a basis for E0[2A]. To do this, you can use 3eB ∗ Random(E0) to
generate random points whose orders are at most 2eA , but think of a check to ensure that
their orders are exactly 2eA (and don’t use the Order function, this could take a while).
Then, ensure they form a basis for E0[2eA ], you will need to ensure that the Weil pairing
e(PA, QA, 2

eA) has exact order 2eA .
(c) Now do the analogous to find a basis PB and QB for E0[3eB ]. You now have all the public

parameters for SIDH.
(d) Alice will choose a secret integer sA ∈ [0, 2eA) that is a multiple of 2. Bob will choose

a secret integer in sB = [0, 3eB ) that is a multiple of 3. Write code that does this. Use
Random(0, n) to generate a random integer in [0, n]. (Side question: why do they need to
be multiples?)

(e) Now comes the hard part(s). We want to write the functions PublicKeyGen Alice and
PublicKeyGen Bob. Each will take in the corresponding secret key and the public param-
eters E0, PA, QA, PB and QB .

i. The first step of Alice’s (resp. Bob’s) public key generation is to compute SA = PA +
[sA]QA (resp. SB = PB + [sB ]QB). Write code that does this.



ii. Alice’s (resp. Bob’s) main loop will compute EA = E0/〈SA〉 (resp. EB = E0/〈SB〉)
using the method described in the slides. Write code that does this. In Alice’s case,
we will want to use 2-isogenies, by calling E′, φ2 := IsogenyFromKernel(E, x − x2),
where x2 is the x-coordinate of the point P2 of order 2 that generates the 2-isogeny
φ2 : E → E′. What does the kernel polynomial look like in Bob’s case, i.e., using points
of order 3?

iii. The main loop will terminate and output EA, which is 2eA -isogenous to E0, as well as
the evaluation of φA : E0 → EA at the points PB and QB , i.e., φA(PB) and φA(QB).
These evaluations should be carried through the main loop in (ii). Alice’s public key
is EA, φA(PB), and φA(QB).

(f) Now we want to write the functions SharedSecret Alice and SharedSecret Bob. Each
will take in the corresponding secret key and the other party’s public key. The first step is
again the scalar multiplication using the points and curve in the public key (and the secret
key/scalar), and then the main loop is the same as in key generation. The only difference
is you no longer need to pull the additional points through. This function should output
the j-invariant (use jInvariant) of the final curve.

(g) Run some dummy key exchanges and test that j(EAB) = j(EBA).

4. Finally, pair up with someone else (or another group) and decide on some public parameters
E0, PA, QA, PB and QB . Decide who is Alice and who is Bob. Then, generate your public
keys (locally, and privately), exchange them over email, and compute the SIDH shared secret.
If they are the same, share a gentle fistbump.

2


