Supersingular isogenies Magma tutorial: ECC 2017

Craig Costello

craigco@microsoft.com

1. Choose a prime p between 50 and 100 and construct the field Fj 2. Define the set super_js
as the empty set. Now write a for loop that loops over all possible j € F,2; inside the loop,
use Magma’s E1lipticCurveFromjInvariant find an elliptic curve E that represents the iso-
morphism class with that j-invariant. Use Magma’s IsSupersingular function to test if F is
supersingular, and if so, use the syntax Include(~ super_js,j) to include j in the set (also
print the group order for each such supersingular curve).

(a) How many supersingular isomorphism classes are there? Does this agree with the theorem
(#Sp2 = [p/12] 4+ b where b € {0,1,2}) from the slides?

(b) Find a p in the interval for each b € {0, 1,2}. You may need to use IrreduciblePolynomial(Fp2,2)
to construct 2, depending on your prime p.

(¢c) What is the group order for each supersingular curve. How does this relate to p?

2. Choose your favourite prime p between 100 and 200 such that p = 3 mod 4.

(a) Using Magma to assist you (and the code written in the previous question), write down
the set Sp2, i.e., the set of j-invariants corresponding to isomorphisms in the supersingular
isogeny class.

(b) Each curve in this class will have three points of exact order 2. Use them and Magma’s
IsogenyFromKernel function to draw (by hand) the 3-regular directed regular graph
X(Sp2,2), i.e., the 2-isogeny graph.

3. Now let’s do some SIDH key exchange.

(a) Write a loop to find your favourite SIDH-friendly prime p = 2¢4 -3°8 — 1, where 2°4 =~ 3¢5
e.g., where o = log 38 / log 2°4 is such that 0.9 < a < 1.1, and p is at least 500 bits. Define
Ey/Fp2: y* = 23+ 2 and assert that this curve is supersingular. Print AbelianGroup(Ej)
to see its group structure, and determine the maximum order of any point in Fj.

(b) We want to find (and fix) two public points P4 and Q4, such that both have order 2¢4
and such that they form a basis for Eq[24]. To do this, you can use 3°Z * Random(Ejp) to
generate random points whose orders are at most 2°4, but think of a check to ensure that
their orders are exactly 2°4 (and don’t use the Order function, this could take a while).
Then, ensure they form a basis for Ey[2¢4], you will need to ensure that the Weil pairing
e(Pa,Qa,2%4) has exact order 2¢4.

(¢) Now do the analogous to find a basis Pg and @ p for E[3°2]. You now have all the public
parameters for SIDH.

(d) Alice will choose a secret integer s4 € [0,2°4) that is a multiple of 2. Bob will choose
a secret integer in sp = [0,3°%) that is a multiple of 3. Write code that does this. Use
Random(0,n) to generate a random integer in [0, n]. (Side question: why do they need to
be multiples?)

(e) Now comes the hard part(s). We want to write the functions PublicKeyGen Alice and
PublicKeyGen Bob. Each will take in the corresponding secret key and the public param-
eters Fy, Pa, Qa, P and Qp.

i. The first step of Alice’s (resp. Bob’s) public key generation is to compute S4 = Pa +
[s4]Qa (resp. Sp = Pp + [sp|@p). Write code that does this.

ii. Alice’s (resp. Bob’s) main loop will compute E4 = Ey/(Sa) (resp. Ep = Eo/(Sp))
using the method described in the slides. Write code that does this. In Alice’s case,
we will want to use 2-isogenies, by calling E’, ¢ := IsogenyFromKernel(F,x — x3),
where z9 is the z-coordinate of the point P, of order 2 that generates the 2-isogeny
¢2: E — E’'. What does the kernel polynomial look like in Bob’s case, i.e., using points
of order 37

iii. The main loop will terminate and output F 4, which is 2¢4-isogenous to FEj, as well as
the evaluation of ¢4: Ey — E 4 at the points P and @p, i.e., $4(Pp) and ¢4 (Qp).
These evaluations should be carried through the main loop in (ii). Alice’s public key
is EA, gf)A(PB), and ¢A(QB)

(f) Now we want to write the functions SharedSecret_Alice and SharedSecret Bob. Each
will take in the corresponding secret key and the other party’s public key. The first step is
again the scalar multiplication using the points and curve in the public key (and the secret
key/scalar), and then the main loop is the same as in key generation. The only difference
is you no longer need to pull the additional points through. This function should output
the j-invariant (use jInvariant) of the final curve.

(g) Run some dummy key exchanges and test that j(Eap) = j(EBa).

4. Finally, pair up with someone else (or another group) and decide on some public parameters
Ey, Pa, Qa, Pg and Qp. Decide who is Alice and who is Bob. Then, generate your public
keys (locally, and privately), exchange them over email, and compute the SIDH shared secret.
If they are the same, share a gentle fistbump.

