
1

Introduction to hardware design
using VHDL

Tim Güneysu and Nele Mentens

ECC school

November 11, 2017, Nijmegen

Outline

• Implementation platforms

• Introduction to VHDL

• Hardware tutorial

ECC school, November 11, 2017, Nijmegen

2

Implementation platforms

• Microprocessor

• FPGA = Field-Programmable Gate Array

• ASIC = Application-Specific Integrated Circuit

ECC school, November 11, 2017, Nijmegen

Implementation platforms
Microprocessor

The CPU is the heart of a

microprocessor and contains

a.o.:

● ALU (Arithmetic Logic Unit)

● register file

● program memory

architecture

Example: AVR

ECC school, November 11, 2017, Nijmegen

3

compiler

assembler

design entry

C, Java,…

assembly program

object files

linker

executable

loader → memory

design flow

● The hardware architecture of a

microprocessor is fixed

● The code describes what should

be executed on the fixed

hardware

● The instructions end up in the

program memory

Implementation platforms
Microprocessor

ECC school, November 11, 2017, Nijmegen

architecture

Basic components:

• CLB = Configurable Logic Block
– CLBs consist of slices.

– Slices consist of
• Look-Up Tables (LUTs),

• Multiplexers,

• Flip-Flops (FFs),

• Carry logic.

• SM = Switch Matrix

• IOB = Input/Output Block

Implementation platforms
Field-Programmable Gate Arrary (FPGA)

ECC school, November 11, 2017, Nijmegen

4

Look-Up
Table
(LUT)

Flip-Flop
(FF)

basic content of a slice

Implementation platforms
Field-Programmable Gate Arrary (FPGA)

ECC school, November 11, 2017, Nijmegen

basic principle of a switch matrix

Implementation platforms
Field-Programmable Gate Arrary (FPGA)

ECC school, November 11, 2017, Nijmegen

5

design flow

● The hardware architecture of an

FPGA is configurable

● The code describes the hardware

that we need

● The bitstream ends up in the

configuration memory

● The area is measured in terms of

occupied LUTs, flip-flops, dedicated

hardware blocks

synthesis

mapping +
place & route

design entry

schematic, HDL,…

netlist

physical layout

bitstream
generation

bitstream

FPGA
configuration

Implementation platforms
Field-Programmable Gate Arrary (FPGA)

ECC school, November 11, 2017, Nijmegen

architecture

Basic components:

• Standard cells from a standard cell library
– Logic cells and sequential cells

Implementation platforms
Application-Specific Integrated Circuit (ASIC)

ECC school, November 11, 2017, Nijmegen

6

design flow
● The hardware architecture of an ASIC is

fixed

● The code describes the hardware that we

need

● The GDS file contains the physical

information that goes to the foundry

● The area is measured in terms of the

number of equivalent NAND gates (Gate

Equivalent = GE)

synthesis

floorplannnig +
place & route

design entry

schematic, HDL,…

netlist

physical layout

fabrication

packaging

wafer

Implementation platforms
Application-Specific Integrated Circuit (ASIC)

ECC school, November 11, 2017, Nijmegen

ASIC FPGA
Domain

specific
DSP VLIW

General

purpose

Performance/Energy unit

High Low

Programmability

Low High

Area efficiency

HW SWHW-SW

Implementation platforms
Comparison

ECC school, November 11, 2017, Nijmegen

7

• VHDL (VHSIC Hardware Description Language)

– VHSIC = Very High Speed Integrated Circuit

• International standard

– First standard: IEEE 1076-1987

– Most recent update: IEEE 1076-2008

Introduction to VHDL
Standard

ECC school, November 11, 2017, Nijmegen

• Description language for hardware  programming language

• Programming language (e.g. C):

– hardware = processor

– hardware is already designed, implemented and fabricated

– code: describes how the hardware will be used

– code is compiled for a specific processor

• Hardware description language (e.g. VHDL)

– hardware = FPGA or ASIC design

– hardware is designed

– code: describes which hardware will be designed

– code is synthesized for a specific FPGA or ASIC technology

– example: c <= a and b; e <= c or d;

e <= c or d; c <= a and b;

Introduction to VHDL
Hardware vs. software

2x the same implementation

a

b

d

c

e

ECC school, November 11, 2017, Nijmegen

8

• The VHDL code of each component consists of

– an interface description: entity,

– a behavioral description: architecture.

• Example:

Introduction to VHDL
Entities and architectures

entity and_or_gate is

port(a, b, d: in bit;

e: out bit);

end and_or_gate;

architecture arch of and_or_gate is

signal c: bit;

begin

c <= a and b;

e <= c or d;

end arch;

a

b

d
e

a

b

d

c

e

ECC school, November 11, 2017, Nijmegen

• Hierarchy can be built in.

• There is hierarchy when a

component contains an

instantiation of another

component.

Introduction to VHDL
Hierarchy

entity and_or_xor_gate is

port(a, b, c, d: in bit;

e: out bit);

end and_or_xor_gate;

architecture arch of and_or_xor_gate is

component and_or_gate is

port(a, b, d: in bit;

e: out bit);

end component;

signal f: bit;

begin

inst_and_or_gate: and_or_gate

port map(a => b,

b => a,

d => c,

e => f);

e <= d xor f;

end arch;

b

a

c

d

f

e

a

b

d
e

and_or_gate

and_or_xor_gate

ECC school, November 11, 2017, Nijmegen

9

• Hierarchy can be built in.

• There is hierarchy when a

component contains an

instantiation of another

component.

Introduction to VHDL
Hierarchy

entity and_or_xor_gate is

port(a, b, c, d: in bit;

e: out bit);

end and_or_xor_gate;

architecture arch of and_or_xor_gate is

component and_or_gate is

port(a, b, d: in bit;

e: out bit);

end component;

signal f: bit;

begin

inst_and_or_gate: and_or_gate

port map(a => b,

b => a,

d => c,

e => f);

e <= d xor f;

end arch;

b

a

c

d

f

e

a

b

d
e

and_or_gate

and_or_xor_gate

inst_and_or_gate: and_or_gate

port map(b, a, c, f);

order must

be correct

ECC school, November 11, 2017, Nijmegen

• The package “std_logic_1164” in library “ieee” contains a.o. the types
“std_ulogic” en “std_logic”, consisting of 9 values (instead of 2 for “bit”)

• It is advised to always use “std_logic” instead of “bit”

Introduction to VHDL
bit vs. std_logic

type std_ulogic is (‘U’, -- Uninitialized

‘X’, -- Forcing Unknown

‘0’, -- Forcing 0

‘1’, -- Forcing 1

‘Z’, -- High Impedance

‘W’, -- Weak Unknown

‘L’, -- Weak 0

‘H’, -- Weak 1

‘-’, -- Don’t Care);

subtype std_logic is resolved std_ulogic;

type std_ulogic_vector

is array (NATURAL range <>) of std_ulogic;

type std_logic_vector

is array (NATURAL range <>) of std_logic;

?

a

b

z

signal a, b, z: std_logic;

…

z <= a;

z <= b;

ECC school, November 11, 2017, Nijmegen

10

• Concurrent statements: are implement in parallel and
executed at the same time

• Sequential statements: can only occur in a process

example:

Introduction to VHDL
Concurrent and sequential statements

entity mux is

port(a, b, s: in std_logic;

z: out std_logic);

end mux;

architecture arch of mux is

begin

p1: process(a, b, s)

begin

if s = ‘1’ then

z <= a;

else

z <= b;

end if;

end process;

end arch;

s

a

b
z1

0
sensitivity

list

ECC school, November 11, 2017, Nijmegen

• D-flipflop:

Introduction to VHDL
Storage elements

library ieee;
use ieee.std_logic_1164.all;

entity dff is
port(d, clk: in std_logic;

q: out std_logic);
end dff;

architecture arch of dff is
begin

store: process(clk)
begin

if clk’event and clk = ‘1’ then
q <= d;

end if;
end process;

end arch;

d

clk

q

ECC school, November 11, 2017, Nijmegen

11

• D-flipflop with asynchronous
reset:

Introduction to VHDL
Storage elements

library ieee;
use ieee.std_logic_1164.all;

entity dff is
port(d, clk, rst: in std_logic;

q: out std_logic);
end dff;

architecture arch of dff is
begin

store: process(rst, clk)
begin

if rst = ‘1’ then
q <= ‘0’;

elsif clk’event and clk = ‘1’ then
q <= d;

end if;
end process;

end arch;

d

clk

q

rst

ECC school, November 11, 2017, Nijmegen

• D-flipflop with synchronous
reset:

Introduction to VHDL
Storage elements

library ieee;
use ieee.std_logic_1164.all;

entity dff is
port(d, clk, rst: in std_logic;

q: out std_logic);
end dff;

architecture arch of dff is
begin

store: process(clk)
begin

if clk’event and clk = ‘1’ then
if rst = ‘1’ then

q <= ‘0’;
else

q <= d;
end if;

end if;
end process;

end arch;

d

clk

q
rst

ECC school, November 11, 2017, Nijmegen

12

• D-flipflop with enable:

Introduction to VHDL
Storage elements

library ieee;
use ieee.std_logic_1164.all;

entity dff is
port(d, clk, enable: in std_logic;

q: out std_logic);
end dff;

architecture arch of dff is
begin

store: process(clk)
begin

if clk’event and clk = ‘1’ then
if enable = ‘1’ then

q <= d;
end if;

end if;
end process;

end arch;

clk

q

ECC school, November 11, 2017, Nijmegen

enable

1

0q

• Register with a parameterizable
width:

Introduction to VHDL
Modules with parameters

clk

q

ECC school, November 11, 2017, Nijmegen

d

library ieee;
use ieee.std_logic_1164.all;

entity ffn is
generic(size: integer:=4);
port(clk: in std_logic;

d: in std_logic_vector(size-1 downto 0);
q: out std_logic_vector(size-1 downto 0));

end ffn;

architecture arch of ffn is
begin

p: process(clk)
begin

if clk’event and clk = ‘1’ then
q <= d;

end if;
end process;

end arch;

n n

13

• A VHDL module can be simulated with a testbench:
– Also written in VHDL

– No ports in the entity

– Containing an instantiation of the device under test (DUT)

• Input signals are applied internally in the testbench

• Output signals are evaluated
– Through waveforms in a simulation window

– In a text file

ECC school, November 11, 2017, Nijmegen

testbench

DUT

Simulation

Hardware tutorial

• 4-bit adder
• n-bit adder
• 4-bit modular adder
• EXERCISE: n-bit modular adder
• n-bit modular adder/subtracter
• n-bit modular constant multiplier (multiplication by 5)
• EXERCISE: n-bit modular multiplier

– through consecutive additions

• EXERCISE: n-bit modular multiplier
– through left-to-right modular double-and-add

• 4xn-bit register file
• EXERCISE: elliptic curve point doubling

ECC school, November 11, 2017, Nijmegen

14

Hardware tutorial

• For each module, the
VHDL code for the module
and the VHDL code for the
testbench are given

• Where it says EXERCISE,
the VHDL code for the
module needs to be
completed

• The tutorial will cover
synthesis and post-
synthesis (behavioral)
simulation

ECC school, November 11, 2017, Nijmegen

design flow

synthesis

mapping +
place & route

design entry

schematic, HDL,…

netlist

physical layout

bitstream
generation

bitstream

FPGA
configuration

