Introduction to hardware design
using VHDL

Tim Gineysu and Nele Mentens

ECC school

November 11, 2017, Nijmegen

Outline

* Implementation platforms
* Introduction to VHDL
e Hardware tutorial

ECC school, November 11, 2017, Nijmegen

Implementation platforms

* Microprocessor
* FPGA = Field-Programmable Gate Array
* ASIC = Application-Specific Integrated Circuit

ECC school, November 11, 2017, Nijmegen

Implementation platforms

Microprocessor

architecture
< l Data Bus 8-bit
Flash ngrr::: . Slalusl’
cid EEl, The CPU is the heart of a

Interry . H
32x8 microprocessor and contains

oo

o SPI
[Regsters Unit a.0.:

e ALU (Arithmetic Logic Unit)
v e register file

® program memory

Instruction
Register
Instruction
Decoder

Control Lines

Direct Addressing
Indirect Addressing

3 3
£|§
5 5
s s

—_—
Data
SRAM

Example: AVR

v

ECC school, November 11, 2017, Nijmegen

S

VO Module n

design flow

Implementation platforms

Microprocessor

design entry

compiler

assembler

object files

H<

executable

I

loader > memory

C, Java,.
y

assembly program
A4

The hardware architecture of a
microprocessor is fixed

The code describes what should
be executed on the fixed
hardware

The instructions end up in the
program memory

ECC school, November 11, 2017, Nijmegen

Implementation platforms

architecture

‘ IOB ‘ ‘ IOB ‘ ‘ IOB ‘
Y [sm] sm] sm]
R [sm] sm] sm]
RCY [sm] smi sm|
SM| @ | SM| |SM|

Field-Programmable Gate Arrary (FPGA)

Basic components:

* CLB = Configurable Logic Block
— CLBs consist of slices.

— Slices consist of

* Look-Up Tables (LUTs),
* Multiplexers,

* Flip-Flops (FFs),

* Carry logic.

SM = Switch Matrix
OB = Input/Output Block

ECC school, November 11, 2017, Nijmegen

Implementation platforms

Field-Programmable Gate Arrary (FPGA)

basic content of a slice

Flip-Flop

(FF)

ECC school, November 11, 2017, Nijmegen

Implementation platforms

Field-Programmable Gate Arrary (FPGA)

basic principle of a switch matrix

ECC school, November 11, 2017, Nijmegen

Implementation platforms

Field-Programmable Gate Arrary (FPGA)
design flow

design entry

schematic, HDL,... e The hardware architecture of an
FPGA is configurable

® The code describes the hardware
that we need

synthesis

netlist

mapping + e The bitstream ends up in the

place & route configuration memory

physical layout e The area is measured in terms of

Bitetream occupied LUTs, flip-flops, dedicated

generation

hardware blocks

bitstream

FPGA
configuration

ECC school, November 11, 2017, Nijmegen

Implementation platforms
Application-Specific Integrated Circuit (ASIC)

architecture

Basic components:

» Standard cells from a standard cell library
— Logic cells and sequential cells

ECC school, November 11, 2017, Nijmegen

Implementation platforms
Application-Specific Integrated Circuit (ASIC)

design flow

design entry

schematic, HDL,...

synthesis

Il
<€
[]

netlist

floorplannnig +
place & route

physical layout

fabrication

I

wafer

packaging

I

ECC school, November 11

I

=
m
G
<
m
Z

The hardware architecture of an ASIC is
fixed

The code describes the hardware that we
need

The GDS file contains the physical
information that goes to the foundry

The area is measured in terms of the
number of equivalent NAND gates (Gate
Equivalent = GE)

, 2017, Nijmegen

Implementation platforms

Comparison
HW HW-SW SW
Domain DSP VLIW General
ASIC FPGA specific purpose

Area efficiency

High

Low

Performance/Energy unit

Programmability

-
o

ECC school, November 11,

High

2017, Nijmegen

Introduction to VHDL

Standard

* VHDL (VHSIC Hardware Description Language)

— VHSIC = Very High Speed Integrated Circuit
* International standard

— First standard: IEEE 1076-1987
— Most recent update: IEEE 1076-2008

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Hardware vs. software
» Description language for hardware = programming language
* Programming language (e.g. C):
— hardware = processor
— hardware is already designed, implemented and fabricated
— code: describes how the hardware will be used
— code is compiled for a specific processor
» Hardware description language (e.g. VHDL)
— hardware = FPGA or ASIC design
hardware is designed
code: describes which hardware will be designed
code is synthesized for a specific FPGA or ASIC technology
example: c<=aandb; e<=cord,;
e<=cord,; c<=aandb;

2 c N /
b

© ’ 2x the same implementation ‘
d

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Entities and architectures

* The VHDL code of each component consists of
— an interface description: entity,
— a behavioral description: architecture.

+ Example:

entity and_or_gate is

port(a, b, d: in bit;
— e: out bit);
end and_or_gate;

a__ |
b — —e
d4

architecture arch of and_or_gate is
signal c: bit;
c begin
— c<=aandb;
e<=cord;
d end arch;

T o
(0]

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Hierarchy
* Hierarchy can be built in. entity a”tc(’—‘)[)—xorag?teb_its
L port(a, b, ¢, d: in bit;
e Thereis h|erarch3_/ when a e: out bit);
component contains an end and_or_xor_gate;
instantiation of another) .
component architecture arch of and_or_xor_gate is

component and_or_gate is

and_or_xor_gate pOI't(a, b, d:in blt,

e: out bit);
and_or_gate end component;
bl 3 signal f: bit;
a+—p e f begin
c1d D* e inst_and_or_gate: and_or_gate
port map(a => b,
d- b=>a,
d=>c,
e=>f),
e <=dxor f;

end arch;

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Hierarchy
+ Hierarchy can be built in. entity a”t‘z_og_xoragéti 'tS
- port(a, b, ¢, d: in bit;
* There is hierarchy when a e: out bit):
component contains an end and_or_xor_gate;
instantiation of another hitect b of and e
architecture arch of and_or_xor_gate is
component. component and_or_gate is
and_or_xor_gate port(a, b, d: in bit;
e: out bit);
and_or_gate end component;
bl a signal f: bit;
allp e f begin ‘
c T1d D% € {inst_and_or_gate: and_or_gate
\ port map(a => b,
d (\"\\c’% b =>a, :
:ﬁ& : d=> c,
inst_and_or_gate: and_or_gate e =>f),
port map(b, a, c, f); e <=d xor f;
R end arch;
order must
be correct

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

bit vs. std_logic

* The package “std_logic_1164" in library “ieee” contains a.o. the types
“std_ulogic” en “std_logic”, consisting of 9 values (instead of 2 for “bit”)

- Uninitialized signal a, b, z: std_logic;
-- Forcing Unknown \@

T
X,
(1) - Eorc!ng 0 y’

, - Forcing 1 (2 .
‘Z', -- High Impedance <=3
W
L,

H

type std_ulogic is (

, -- Weak Unknown

" DoptCare) a
z
subtype std_logic is resolved std_ulogic;

type std_ulogic_vector

is array (NATURAL range <>) of std_ulogic;
type std_logic_vector

is array (NATURAL range <>) of std_logic;

* Itis advised to always use “std_logic” instead of “bit”

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Concurrent and sequential statements

* Concurrent statements: are implement in parallel and
executed at the same time

* Sequential statements: can only occur in a process

entity mux is
port(a, b, s: in std_logic;
z: out std_logic);
end mux;

architecture arch of mux is
example: begin

pl: process(a, b, s) ——

sensitivit Z
begin list v b
if s ='1" then

z<=a;

else
z<=b;
end if;
end process;
end arch;

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Storage elements

* D-flipflop:

library ieee;
use ieee.std_logic_1164.all;

entity dff is
port(d, clk: in std_logic;
g: out std_logic);
end dff;

architecture arch of dff is
begin

store: process(clk)
clk — begin

if clk’event and clk = ‘1’ then

q<=d;
’ end if;

end process;
end arch;

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Storage elements

* D-flipflop with asynchronous |iibrary ieee;
reset: use ieee.std_logic_1164.all;

entity dff is
port(d, clk, rst: in std_logic;

rst q: out std_logic);

end dff;

architecture arch of dff is
begin
store: process(rst, clk)
begin
clk — if rst = ‘1’ then
— g<=0;
elsif clk’event and clk = ‘1’ then
4 a<d;
end if;
end process;
end arch;

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Storage elements

i . library ieee;
* D-flipflop with synchronous use ieee.std_logic_1164.all;

reset:
entity dff is
port(d, clk, rst: in std_logic;
g: out std_logic);
end dff;

architecture arch of dff is
rst begin
d q store: process(clk)
begin
if clk’event and clk = ‘1’ then

if rst = ‘1’ then
q<=0%

else
q<=d;

end if;
end if;
end process;
end arch;

clk ——]

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Storage elements

* D-flipflop with enable: library icee;
use ieee.std_logic_1164.all;
entity dff is
enable port(d, clk, enable: in std_logic;
q: out std_logic);
end dff;
1) .
0 q architecture arch of dff is
q begin
store: process(clk)
clk begin
if clk’event and clk = ‘1’ then

if enable = ‘1’ then

j end if(j| <

end if;
end process;
end arch;

ECC school, November 11, 2017, Nijmegen

Introduction to VHDL

Modules with parameters

* Register with a parameterizable | jiprary ieee;
width: use ieee.std_logic_1164.all;

entity ffn is
generic(size: integer:=4);
port(clk: in std_logic;
d: in std_logic_vector(size-1 downto 0);
g: out std_logic_vector(size-1 downto 0));

n n end ffn;
d — ——q
architecture arch of ffn is
begin
clk —1 p: process(clk)
begin

if clk’event and clk = ‘1’ then
end if;
end process;
end arch;

ECC school, November 11, 2017, Nijmegen

Simulation

* A VHDL module can be simulated with a testbench:
— Also written in VHDL
— No ports in the entity
— Containing an instantiation of the device under test (DUT)

* Input signals are applied internally in the testbench
* Output signals are evaluated

— Through waveforms in a simulation window

— In a text file testbench

DUT

ECC school, November 11, 2017, Nijmegen

Hardware tutorial

* 4-bit adder
* n-bit adder
* 4-bit modular adder
* EXERCISE: n-bit modular adder
* n-bit modular adder/subtracter
* n-bit modular constant multiplier (multiplication by 5)
* EXERCISE: n-bit modular multiplier
— through consecutive additions
* EXERCISE: n-bit modular multiplier
— through left-to-right modular double-and-add
* 4xn-bit register file
* EXERCISE: elliptic curve point doubling

ECC school, November 11, 2017, Nijmegen

13

Hardware tutorial

For each module, the
VHDL code for the module
and the VHDL code for the
testbench are given

Where it says EXERCISE,
the VHDL code for the
module needs to be
completed

The tutorial will cover
synthesis and post-
synthesis (behavioral)
simulation

design flow

design entry

schematic, HDL,...

synthesis

netlist

mapping +
place & route

physical layout

bitstream
generation

bitstream

FPGA

configuration
ECC school, November 11, 2017, Nijmegen

14

